Over 125 million years of ant-plant interactions have culminated in one of the most intriguing evolutionary outcomes in life history. The myrmecophyte Duroia hirsuta (Rubiaceae) is known for its mutualistic association with the ant Myrmelachista schumanni and several other species, mainly Azteca, in the north-western Amazon. While both ants provide indirect defences to plants, only M.
View Article and Find Full Text PDFClimate models predict that everwet western Amazonian forests will face warmer and wetter atmospheric conditions, and increased cloud cover. It remains unclear how these changes will impact plant reproductive performance, such as flowering, which plays a central role in sustaining food webs and forest regeneration. Warmer and wetter nights may cause reduced flower production, via increased dark respiration rates or alteration in the reliability of flowering cue-based processes.
View Article and Find Full Text PDFTables and charts have long been seen as effective ways to convey data. Much attention has been focused on improving charts, following ideas of human perception and brain function. Tables can also be viewed as two-dimensional representations of data; yet, it is only fairly recently that we have begun to apply principles of design that aid the communication of information between the author and reader.
View Article and Find Full Text PDFFlowering and fruiting phenology have been infrequently studied in the ever-wet hyperdiverse lowland forests of northwestern equatorial Amazonía. These Neotropical forests are typically called aseasonal with reference to climate because they are ever-wet, and it is often assumed they are also aseasonal with respect to phenology. The physiological limits to plant reproduction imposed by water and light availability are difficult to disentangle in seasonal forests because these variables are often temporally correlated, and both are rarely studied together, challenging our understanding of their relative importance as drivers of reproduction.
View Article and Find Full Text PDFPremise: Understanding the drivers of the growth in long-lived woody trees is the key to predicting their responses to and maintaining their populations under global change. However, the role of tree sex and differential investment to reproduction are often not considered in models of individual tree growth, despite many gymnosperm and angiosperm species having separate male and female sexes. Thus, better models of tree growth should include tree sex and life stage along with the abiotic and biotic neighborhoods.
View Article and Find Full Text PDFPremise: The Ocotea complex contains the greatest diversity of Lauraceae in the Neotropics. However, the traditional taxonomy of the group has relied on only three main floral characters, and previous molecular analyses have used only a few markers and provided limited support for relationships among the major clades. This lack of useful data has hindered the development of a comprehensive classification, as well as studies of character evolution.
View Article and Find Full Text PDFPlant-soil feedback (PSF) theory provides a powerful framework for understanding plant dynamics by integrating growth assays into predictions of whether soil communities stabilise plant-plant interactions. However, we lack a comprehensive view of the likelihood of feedback-driven coexistence, partly because of a failure to analyse pairwise PSF, the metric directly linked to plant species coexistence. Here, we determine the relative importance of plant evolutionary history, traits, and environmental factors for coexistence through PSF using a meta-analysis of 1038 pairwise PSF measures.
View Article and Find Full Text PDFEnvironment and human land use both shape forest composition. Abiotic conditions sift tree species from a regional pool via functional traits that influence species' suitability to the local environment. In addition, human land use can modify species distributions and change functional diversity of forests.
View Article and Find Full Text PDFRecent evidence suggests that plant performance can be influenced by the phylogenetic diversity of neighboring plants. However, no study to date has examined the effect of such phylogenetic density dependence on the transition from seed to seedling. Using 6 years of data on seedling recruitment and seed rain of 13 species from 130 stations (one 0.
View Article and Find Full Text PDFNitrogen (N) and phosphorus (P) deposition are increasing worldwide largely due to increased fertilizer use and fossil fuel combustion. Most work with N and P deposition in natural ecosystems has focused on temperate, highly industrialized, regions. Tropical regions are becoming more developed, releasing large amounts of these nutrients into the atmosphere.
View Article and Find Full Text PDFThe "liana dominance hypothesis" posits that lianas are increasing in abundance in tropical forests, thereby potentially reducing tree biomass due to competitive interactions between trees and lianas. This scenario has implications not only for forest ecosystem function and species composition, but also climate change given the mass of carbon stored in tropical trees. In 2003 and 2013, all Myristicaceae trees in the 50-ha Yasuní Forest Dynamics Plot, Ecuador, were surveyed for liana presence and load in their crowns.
View Article and Find Full Text PDFHow ecological context shapes mutualistic relationships remains poorly understood. We combined long-term tree census data with ant censuses in a permanent 25-ha Amazonian forest dynamics plot to evaluate the effect of the mutualistic ant Myrmelachista schumanni (Formicinae) on the growth and survival of the common Amazonian tree Duroia hirsuta (Rubiaceae), considering its interactions with tree growth, population structure, and habitat. We found that the mutualist ant more than doubled tree relative growth rates and increased odds of survival.
View Article and Find Full Text PDFPatterns of diversity and community composition in forests are controlled by a combination of environmental factors, historical events, and stochastic or neutral mechanisms. Each of these processes has been linked to forest community assembly, but their combined contributions to alpha and beta-diversity in forests has not been well explored. Here we use variance partitioning to analyze approximately 40,000 individual trees of 49 species, collected within 137 ha of sampling area spread across a 900-ha temperate deciduous forest reserve in Pennsylvania to ask (1) To what extent is site-to-site variation in species richness and community composition of a temperate forest explained by measured environmental gradients and by spatial descriptors (used here to estimate dispersal-assembly or unmeasured, spatially structured processes)? (2) How does the incorporation of land-use history information increase the importance attributed to deterministic community assembly? and (3) How do the distributions and abundances of individual species within the community correlate with these factors? Environmental variables (i.
View Article and Find Full Text PDFAnthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii) in a 900-ha deciduous forest in the eastern U.
View Article and Find Full Text PDFThe Janzen-Connell hypothesis proposes that specialist natural enemies, such as herbivores and pathogens, maintain diversity in plant communities by reducing survival rates of conspecific seeds and seedlings located close to reproductive adults or in areas of high conspecific density. Variation in the strength of distance- and density-dependent effects is hypothesized to explain variation in plant species richness along climatic gradients, with effects predicted to be stronger in the tropics than the temperate zone and in wetter habitats compared to drier habitats.We conducted a comprehensive literature search to identify peer-reviewed experimental studies published in the 40+ years since the hypothesis was first proposed.
View Article and Find Full Text PDFTo generate realistic projections of species' responses to climate change, we need to understand the factors that limit their ability to respond. Although climatic niche conservatism, the maintenance of a species's climatic niche over time, is a critical assumption in niche-based species distribution models, little is known about how universal it is and how it operates. In particular, few studies have tested the role of climatic niche conservatism via phenological changes in explaining the reported wide variance in the extent of range shifts among species.
View Article and Find Full Text PDFAim. Throughout evolutionary history, plants and animals have evolved alongside one another. This is especially apparent when considering mutualistic relationships such as between plants with extra-floral nectaries (EFNs, glands on leaves or stems that secrete nectar) and the ants that visit them.
View Article and Find Full Text PDFBackground: Many tropical forest tree species delay greening their leaves until full expansion. This strategy is thought to provide newly flushing leaves with protection against damage by herbivores by keeping young leaves devoid of nutritive value. Because young leaves suffer the greatest predation from invertebrate herbivores, delayed greening could prevent costly tissue loss.
View Article and Find Full Text PDFShifting flowering phenology with rising temperatures is occurring worldwide, but the rarity of co-occurring long-term observational and temperature records has hindered the evaluation of phenological responsiveness in many species and across large spatial scales. We used herbarium specimens combined with historic temperature data to examine the impact of climate change on flowering trends in 141 species collected across 116,000 km(2) in north-central North America. On average, date of maximum flowering advanced 2.
View Article and Find Full Text PDFA fundamental challenge facing physiological ecologists is to understand how variation in life history at the whole-organism level might be linked to cellular function. Thus, because tropical birds have higher annual survival and lower rates of metabolism, we hypothesized that cells from tropical species would have greater cellular resistance to chemical injury than cells from temperate species. We cultured dermal fibroblasts from 26 tropical and 26 temperate species of birds and examined cellular resistance to cadmium, H(2)O(2), paraquat, thapsigargin, tunicamycium, methane methylsulfonate (MMS) and UV light.
View Article and Find Full Text PDFSeedling dynamics play a crucial role in determining species distributions and coexistence. Exploring causes of variation in seedling dynamics can therefore provide key insights into the factors affecting these phenomena. We examined the relative importance of biotic neighborhood processes and habitat heterogeneity using survival data for 5,827 seedlings in 39 tree and shrub species over 2 years from an old-growth temperate forest in northeastern China.
View Article and Find Full Text PDFBackground: Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure.
View Article and Find Full Text PDFDensity-structured models are structured population models in which the state variable is the proportion of populations or sites in a small number of discrete density states. Although such models have rarely been used, they have the advantage that they are straightforward to parameterize, make few assumptions about population dynamics, and permit rapid data collection using coarse density assessment. In this article, we highlight their use in relating population dynamics to environmental variation and their robustness to measurement error.
View Article and Find Full Text PDF