The development of a sensitive and specific blood test for the early detection of breast cancer is crucial to improve screening and patient outcomes. Existing methods, such as mammography, have limitations, necessitating the exploration of alternative approaches, including circulating factors. Using 598 prospectively collected blood samples, a multivariate plasma-derived lipid biomarker signature was developed that can distinguish healthy control individuals from those with breast cancer.
View Article and Find Full Text PDFWhen using mathematical models to make quantitative predictions for clinical or industrial use, it is important that predictions come with a reliable estimate of their accuracy (uncertainty quantification). Because models of complex biological systems are always large simplifications, model discrepancy arises-models fail to perfectly recapitulate the true data generating process. This presents a particular challenge for making accurate predictions, and especially for accurately quantifying uncertainty in these predictions.
View Article and Find Full Text PDFHIV-1 persists indefinitely in people living with HIV (PLWH) on antiretroviral therapy (ART). If ART is stopped, the virus rapidly rebounds from long-lived latently infected cells. Using a humanized mouse model of HIV-1 infection and CD4 T cells from PLWH on ART, we investigate whether antagonizing host pro-survival proteins can prime latent cells to die and facilitate HIV-1 clearance.
View Article and Find Full Text PDFNecroptosis is a lytic and inflammatory form of cell death that is highly constrained to mitigate detrimental collateral tissue damage and impaired immunity. These constraints make it difficult to define the relevance of necroptosis in diseases such as chronic and persistent viral infections and within individual organ systems. The role of necroptotic signalling is further complicated because proteins essential to this pathway, such as receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), have been implicated in roles outside of necroptotic signalling.
View Article and Find Full Text PDFDuring the SARS-CoV-2 pandemic, epidemic models have been central to policy-making. Public health responses have been shaped by model-based projections and inferences, especially related to the impact of various non-pharmaceutical interventions. Accompanying this has been increased scrutiny over model performance, model assumptions, and the way that uncertainty is incorporated and presented.
View Article and Find Full Text PDFBackground & Aims: Necroptosis is a highly inflammatory mode of cell death that has been implicated in causing hepatic injury including steatohepatitis/ nonalcoholic steatohepatitis (NASH); however, the evidence supporting these claims has been controversial. A comprehensive, fundamental understanding of cell death pathways involved in liver disease critically underpins rational strategies for therapeutic intervention. We sought to define the role and relevance of necroptosis in liver pathology.
View Article and Find Full Text PDFThe hormone gibberellin (GA) controls plant growth and regulates growth responses to environmental stress. In monocotyledonous leaves, GA controls growth by regulating division-zone size. We used a systems approach to investigate the establishment of the GA distribution in the maize leaf growth zone to understand how drought and cold alter leaf growth.
View Article and Find Full Text PDFCaspase-8 transduces signals from death receptor ligands, such as tumor necrosis factor, to drive potent responses including inflammation, cell proliferation or cell death. This is a developmentally essential function because in utero deletion of endothelial Caspase-8 causes systemic circulatory collapse during embryogenesis. Whether endothelial Caspase-8 is also required for cardiovascular patency during adulthood was unknown.
View Article and Find Full Text PDFTargeting the potent immunosuppressive properties of FOXP3 regulatory T cells (T) has substantial therapeutic potential for treating autoimmune and inflammatory diseases. Yet, the molecular mechanisms controlling T homeostasis, particularly during inflammation, remain unclear. We report that caspase-8 is a central regulator of T homeostasis in a context-specific manner that is decisive during immune responses.
View Article and Find Full Text PDFIneffective antibody-mediated responses are a key characteristic of chronic viral infection. However, our understanding of the intrinsic mechanisms that drive this dysregulation are unclear. Here, we identify that targeting the epigenetic modifier BMI-1 in mice improves humoral responses to chronic lymphocytic choriomeningitis virus.
View Article and Find Full Text PDFA strategy is outlined to reduce the number of training points required to model intermolecular potentials using Gaussian processes, without reducing accuracy. An asymptotic function is used at a long range, and the crossover distance between this model and the Gaussian process is learnt from the training data. The results are presented for different implementations of this procedure, known as boundary optimization, across the following dimer systems: CO-Ne, HF-Ne, HF-Na, CO-Ne, and (CO).
View Article and Find Full Text PDFDendritic cells (DCs) and macrophages are at the forefront of immune responses, modifying their transcriptional programs in response to their tissue environment or immunological challenge. Posttranslational modifications of histones, such as histone H3 lysine-27 trimethylation (H3K27me3) by the Polycomb repressive complex 2 (PRC2), are tightly associated with epigenetic regulation of gene expression. To explore whether H3K27me3 is involved in either the establishment or function of the mononuclear phagocyte system, we selectively deleted core components of PRC2, either EZH2 or SUZ12, in CD11c-expressing myeloid cells.
View Article and Find Full Text PDFApoptosis can potently defend against intracellular pathogens by directly killing microbes and eliminating their replicative niche. However, the reported ability of Mycobacterium tuberculosis to restrict apoptotic pathways in macrophages in vitro has led to apoptosis being dismissed as a host-protective process in tuberculosis despite a lack of in vivo evidence. Here we define crucial in vivo functions of the death receptor-mediated and BCL-2-regulated apoptosis pathways in mediating protection against tuberculosis by eliminating distinct populations of infected macrophages and neutrophils and priming T cell responses.
View Article and Find Full Text PDFThe stress-activated protein kinases (SAPKs)/c-Jun-N-terminal-kinases (JNK) are members of the mitogen-activated protein kinase family. These kinases are responsible for transducing cellular signals through a phosphorylation-dependent signaling cascade. JNK activation in immune cells can lead to a range of critical cellular responses that include proliferation, differentiation and apoptosis.
View Article and Find Full Text PDFMicroRNAs are known to regulate gene expression either by repressing translation or by directing sequence-specific degradation of target mRNAs, and are therefore considered to be key regulators of gene expression. A gene-regulatory pathway involving heterochronic genes controls the temporal pattern of postembryonic cell lineages. Based on experimental data, we propose and analyze a mathematical model of a gene-regulatory module in this nematode involving two heterochronic genes, and , which are both regulated by , encoding a microRNA.
View Article and Find Full Text PDFIn the root, meristem and elongation zone lengths remain stable, despite growth and division of cells. To gain insight into zone stability, we imaged individual Arabidopsis thaliana roots through a horizontal microscope and used image analysis to obtain velocity profiles. For a root, velocity profiles obtained every 5 min over 3 h coincided closely, implying that zonation is regulated tightly.
View Article and Find Full Text PDFDeveloping effective strategies to use models in conjunction with experimental data is essential to understand the dynamics of biological regulatory networks. In this study, we demonstrate how combining parameter estimation with asymptotic analysis can reveal the key features of a network and lead to simplified models that capture the observed network dynamics. Our approach involves fitting the model to experimental data and using the profile likelihood to identify small parameters and cases where model dynamics are insensitive to changing particular individual parameters.
View Article and Find Full Text PDFBackground And Aims: Diurnal changes in solar position and intensity combined with the structural complexity of plant architecture result in highly variable and dynamic light patterns within the plant canopy. This affects productivity through the complex ways that photosynthesis responds to changes in light intensity. Current methods to characterize light dynamics, such as ray-tracing, are able to produce data with excellent spatio-temporal resolution but are computationally intensive and the resulting data are complex and high-dimensional.
View Article and Find Full Text PDFMost persistent viral infections can be controlled, but not cured, by current therapies. Abrogated antiviral immunity and stable latently infected cells represent major barriers to cure. This necessitates life-long suppressive antiviral therapy.
View Article and Find Full Text PDFDuring chronic stimulation, CD8 T cells acquire an exhausted phenotype characterized by expression of inhibitory receptors, down-modulation of effector function, and metabolic impairments. T cell exhaustion protects from excessive immunopathology but limits clearance of virus-infected or tumor cells. We transcriptionally profiled antigen-specific T cells from mice infected with lymphocytic choriomeningitis virus strains that cause acute or chronic disease.
View Article and Find Full Text PDFMixed lineage kinase domain-like (MLKL)-dependent necroptosis is thought to be implicated in the death of mycobacteria-infected macrophages, reportedly allowing escape and dissemination of the microorganism. Given the consequent interest in developing inhibitors of necroptosis to treat Mycobacterium tuberculosis (Mtb) infection, we used human pharmacologic and murine genetic models to definitively establish the pathophysiological role of necroptosis in Mtb infection. We observed that Mtb infection of macrophages remodeled the intracellular signaling landscape by upregulating MLKL, TNFR1, and ZBP1, whilst downregulating cIAP1, thereby establishing a strong pro-necroptotic milieu.
View Article and Find Full Text PDFThe Tet-On/Off system for conditional transgene expression constitutes state-of-the-art technology to study gene function by facilitating inducible expression in a timed and reversible manner. Several studies documented the suitability and versatility of this system to trace lymphocyte fate and to conditionally express oncogenes or silence tumour suppressor genes in vivo. Here, we show that expression of the tetracycline/doxycycline-controlled Tet-transactivator, while tolerated well during development and in immunologically unchallenged animals, impairs the expansion of antigen-stimulated T and B cells and thereby curtails adaptive immune responses in vivo.
View Article and Find Full Text PDFDouble-stranded RNA (dsRNA) is a common by-product of viral infections and acts as a potent trigger of antiviral immunity. In the nematode C. elegans, sid-1 encodes a dsRNA transporter that is highly conserved throughout animal evolution, but the physiological role of SID-1 and its orthologs remains unclear.
View Article and Find Full Text PDFThe physiological role of the pro-survival BCL-2 family member A1 has been debated for a long time. Strong mRNA induction in T cells on T cell receptor (TCR)-engagement suggested a major role of A1 in the survival of activated T cells. However, the investigation of the physiological roles of A1 was complicated by the quadruplication of the A1 gene locus in mice, making A1 gene targeting very difficult.
View Article and Find Full Text PDFPhysical perturbation of a plant canopy brought about by wind is a ubiquitous phenomenon and yet its biological importance has often been overlooked. This is partly due to the complexity of the issue at hand: wind-induced movement (or mechanical excitation) is a stochastic process which is difficult to measure and quantify; plant motion is dependent upon canopy architectural features which, until recently, were difficult to accurately represent and model in 3-dimensions; light patterning throughout a canopy is difficult to compute at high-resolutions, especially when confounded by other environmental variables. Recent studies have reinforced the expectation that canopy architecture is a strong determinant of productivity and yield; however, links between the architectural properties of the plant and its mechanical properties, particularly its response to wind, are relatively unknown.
View Article and Find Full Text PDF