Publications by authors named "Simon Peacock"

Background: Neck surface accelerometer (NSA) wearable devices have been developed for voice and upper airway health monitoring. As opposed to acoustic sounds, NSA senses mechanical vibrations propagated from the vocal tract to neck skin, which are indicative of a person's voice and airway conditions. NSA signals do not carry identifiable speech information and a speaker's privacy is thus protected, which is important and necessary for continuous wearable monitoring.

View Article and Find Full Text PDF

The widespread application of fertilizers has greatly influenced many processes and properties of agroecosystems, and agricultural fertilization is expected to increase even further in the future. To date, most research on fertilizer impacts has used short-term studies, which may be unrepresentative of long-term responses, thus hindering our capacity to predict long-term impacts. Here, we examined the effects of long-term fertilizer addition on key ecosystem properties in a long-term grassland experiment (Palace Leas Hay Meadow) in which farmyard manure (FYM) and inorganic fertilizer treatments have been applied consistently for 120 years in order to characterize the experimental site more fully and compare ecosystem responses with those observed at other long-term and short-term experiments.

View Article and Find Full Text PDF

The effects of increased tropospheric ozone (O) pollution levels on methane (CH) emissions from peatlands, and their underlying mechanisms, remain unclear. In this study, we exposed peatland mesocosms from a temperate wet heath dominated by the sedge Schoenus nigricans and Sphagnum papillosum to four O treatments in open-top chambers for 2.5years, to investigate the O impacts on CH emissions and the processes that underpin these responses.

View Article and Find Full Text PDF

In this study we have demonstrated that rising background ozone has the potential to reduce grassland forage quality and explored the implications for livestock production. We analysed pasture samples from seven ozone exposure experiments comprising mesotrophic, calcareous, haymeadow and sanddune unimproved grasslands conducted in open-top chambers, solardomes and a field release system. Across all grassland types, there were significant increases in acid detergent fibre, crude fibre and lignin content with increasing ozone concentration, resulting in decreased pasture quality in terms of the metabolisable energy content of the vegetation.

View Article and Find Full Text PDF

Northern hemispheric background concentrations of ozone are increasing, but few studies have assessed the ecological significance of these changes for grasslands of high conservation value under field conditions. We carried out a 3-year field experiment in which ozone was released at a controlled rate over three experimental transects to produce concentration gradients over the field site, an upland mesotrophic grassland located in the UK. We measured individual species biomass in an annual hay cut in plots receiving ambient ozone, and ambient ozone elevated by mean concentrations of approximately 4 ppb and 10 ppb in the growing seasons of 2008 and 2009.

View Article and Find Full Text PDF

Water and hydrous minerals play a key part in geodynamic processes at subduction zones by weakening the plate boundary, aiding slip and permitting subduction-and indeed plate tectonics-to occur. The seismological signature of water within the forearc mantle wedge is evident in anomalies with low seismic shear velocity marking serpentinization. However, seismological observations bearing on the presence of water within the subducting plate itself are less well documented.

View Article and Find Full Text PDF

Parasitic plants are one of the most ubiquitous groups of generalist parasites in both natural and managed ecosystems, with over 3,000 known species worldwide. Although much is known about how parasitic plants influence host performance, their role as drivers of community- and ecosystem-level properties remains largely unexplored. Parasitic plants have the potential to influence directly the productivity and structure of plant communities because they cause harm to particular host plants, indirectly increasing the competitive status of non-host species.

View Article and Find Full Text PDF