Background: Homeostatic regulation of sleep is reflected in the maintenance of a daily balance between sleep and wakefulness. Although numerous internal and external factors can influence sleep, it is unclear whether and to what extent the process that keeps track of time spent awake is determined by the content of the waking experience. We hypothesised that alterations in environmental conditions may elicit different types of wakefulness, which will in turn influence both the capacity to sustain continuous wakefulness as well as the rates of accumulating sleep pressure.
View Article and Find Full Text PDFGABA-ergic neurotransmission plays a key role in sleep regulatory mechanisms and in brain oscillations during sleep. Benzodiazepines such as diazepam are known to induce sedation and promote sleep, however, EEG spectral power in slow frequencies is typically reduced after the administration of benzodiazepines or similar compounds. EEG slow waves arise from a synchronous alternation between periods of cortical network activity (ON) and silence (OFF), and represent a sensitive marker of preceding sleep-wake history.
View Article and Find Full Text PDFSleep-wake history, wake behaviors, lighting conditions, and circadian time influence sleep, but neither their relative contribution nor the underlying mechanisms are fully understood. The dynamics of electroencephalogram (EEG) slow-wave activity (SWA) during sleep can be described using the two-process model, whereby the parameters of homeostatic Process S are estimated using empirical EEG SWA (0.5-4 Hz) in nonrapid eye movement sleep (NREMS), and the 24 hr distribution of vigilance states.
View Article and Find Full Text PDFHealthy aging is associated with marked effects on sleep, including its daily amount and architecture, as well as the specific EEG oscillations. Neither the neurophysiological underpinnings nor the biological significance of these changes are understood, and crucially the question remains whether aging is associated with reduced sleep need or a diminished capacity to generate sufficient sleep. Here we tested the hypothesis that aging may affect local cortical networks, disrupting the capacity to generate and sustain sleep oscillations, and with it the local homeostatic response to sleep loss.
View Article and Find Full Text PDFUnraveling the roles of distinct neuron types is a fundamental challenge to understanding brain function in health and disease. In the amygdala, a brain structure regulating emotional behavior, the diversity of GABAergic neurons has been only partially explored. We report a novel population of GABAergic amygdala neurons expressing high levels of neuronal nitric oxide synthase (nNOS).
View Article and Find Full Text PDFTrace amine-associated receptor 1 (TAAR1) agonists have been shown to have procognitive, antipsychotic-like, anxiolytic, weight-reducing, glucose-lowering, and wake-promoting activities. We used Taar1 knockout (KO) and overexpressing (OE) mice and TAAR1 agonists to elucidate the role of TAAR1 in sleep/wake. EEG, EMG, body temperature (T), and locomotor activity (LMA) were recorded in Taar1 KO, OE, and WT mice.
View Article and Find Full Text PDFProlonged wakefulness is thought to gradually increase 'sleep need' and influence subsequent sleep duration and intensity, but the role of specific waking behaviours remains unclear. Here we report the effect of voluntary wheel running during wakefulness on neuronal activity in the motor and somatosensory cortex in mice. We find that stereotypic wheel running is associated with a substantial reduction in firing rates among a large subpopulation of cortical neurons, especially at high speeds.
View Article and Find Full Text PDFStudy Objectives: Patients with Huntington's disease (HD) show a high prevalence of sleep disorders that typically occur prior to the onset of motoric symptoms and neurodegeneration. Our understanding of the pathophysiological alterations in premanifest HD is limited, hindering the ability to measure disease modification in response to treatment. We used a full-length knock-in HD model to determine early changes in the electroencephalogram (EEG) and sleep that may predict the onset and progression of the disease.
View Article and Find Full Text PDFDeficits in sleep and circadian organization have been identified as common early features in patients with Huntington's disease that correlate with symptom severity and may be instrumental in disease progression. Studies in Huntington's disease gene carriers suggest that alterations in the electroencephalogram may reflect underlying neuronal dysfunction that is present in the premanifest stage. We conducted a longitudinal characterization of sleep/wake and electroencephalographic activity in the R6/2 mouse model of Huntington's disease to determine whether analogous electroencephalographic 'signatures' could be identified early in disease progression.
View Article and Find Full Text PDFThe sleep/wake cycle is arguably the most familiar output of the circadian system, however, sleep is a complex biological process that arises from multiple brain regions and neurotransmitters, which is regulated by numerous physiological and environmental factors. These include a circadian drive for wakefulness as well as an increase in the requirement for sleep with prolonged waking (the sleep homeostat). In this chapter, we describe the regulation of sleep, with a particular emphasis on the contribution of the circadian system.
View Article and Find Full Text PDFStudy Objectives: Humans with narcolepsy and orexin/ataxin-3 transgenic (TG) mice exhibit extensive, but incomplete, degeneration of hypo-cretin (Hcrt) neurons. Partial Hcrt cell loss also occurs in Parkinson disease and other neurologic conditions. Whether Hcrt antagonists such as almorexant (ALM) can exert an effect on the Hcrt that remains after Hcrt neurodegeneration has not yet been determined.
View Article and Find Full Text PDFThe change in irradiance at dawn and dusk provides the primary cue for the entrainment of the mammalian circadian pacemaker. Irradiance detection has been ascribed largely to melanopsin-based phototransduction [1-5]. Here we examine the role of ultraviolet-sensitive (UVS) cones in the modulation of circadian behavior, sleep, and suprachiasmatic nucleus (SCN) electrical activity.
View Article and Find Full Text PDFSleep is a fundamental biological rhythm involving the interaction of numerous brain structures and diverse neurotransmitter systems. The primary measures used to define sleep are the electroencephalogram (EEG) and electromyogram (EMG). However, EEG-based methods are often unsuitable for use in high-throughput screens as they are time-intensive and involve invasive surgery.
View Article and Find Full Text PDFSleep and circadian rhythm disruption has been widely observed in neuropsychiatric disorders including schizophrenia [1] and often precedes related symptoms [2]. However, mechanistic basis for this association remains unknown. Therefore, we investigated the circadian phenotype of blind-drunk (Bdr), a mouse model of synaptosomal-associated protein (Snap)-25 exocytotic disruption that displays schizophrenic endophenotypes modulated by prenatal factors and reversible by antipsychotic treatment [3, 4].
View Article and Find Full Text PDFStudy Objectives: Though melatonin and melatonin receptor agonists are in clinical use and under development for treating insomnia, the role of endogenous melatonin in the regulation of the sleep-wake cycle remains uncertain. Some clinical case reports suggest that reduced nocturnal melatonin secretion is linked to sleep disruption, but pineal-gland removal in experimental animals has given variable results.
Design: The present study examined the effects of pinealectomy on the diurnal sleep-wake cycle of rats implanted with a radiotransmitter to allow continuous measurement of cortical electroencephalogram, electromyogram, and core temperature (Tc) without restraint in their home cages.
Several novel melatonin receptor agonists, in addition to various formulations of melatonin itself, are either available or in development for the treatment of insomnia. Melatonin is thought to exert its effects principally through two high affinity, G-protein coupled receptors, MT1 and MT2, though it is not known which subtype is responsible for the sleep-promoting action. The present study used radiotelemetry to record EEG and EMG in un-restrained freely moving rats to monitor the sleep-wake behaviour and examined the acute sleep-promoting activity of an MT2 receptor subtype selective melatonin analog, IIK7.
View Article and Find Full Text PDFInsomnia, which is severe enough to warrant treatment, occurs in approximately 10% of the general population. It is associated with a range of adverse consequences for human health, economic productivity and quality of life. In animal and human studies, administration of melatonin has been reported to promote sleep, although there has been controversy regarding its effectiveness.
View Article and Find Full Text PDF