The single-celled apicomplexan parasite is responsible for the majority of deaths due to malaria each year. The selection of drug resistance has been a recurring theme over the decades with each new drug that is developed. It is therefore crucial that future generations of drugs are explored to tackle this major public health problem.
View Article and Find Full Text PDFOne of the attractive properties of artemisinins is their extremely fast-killing capability, quickly relieving malaria symptoms. Nevertheless, the unique benefits of these medicines are now compromised by the prolonged parasite clearance times and the increasing frequency of treatment failures, attributed to the increased tolerance of to artemisinin. This emerging artemisinin resistance threatens to undermine the effectiveness of antimalarial combination therapies.
View Article and Find Full Text PDFFocussed studies on imidazopyridine inhibitors of Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG) have significantly advanced the series towards desirable in vitro property space. LLE-based approaches towards combining improvements in cell potency, key physicochemical parameters and structural novelty are described, and a structure-based design hypothesis relating to substituent regiochemistry has directed efforts towards key examples with well-balanced potency, ADME and kinase selectivity profiles.
View Article and Find Full Text PDFDevelopment of a class of bicyclic inhibitors of the Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG), starting from known compounds with activity against a related parasite PKG orthologue, is reported. Examination of key sub-structural elements led to new compounds with good levels of inhibitory activity against the recombinant kinase and in vitro activity against the parasite. Key examples were shown to possess encouraging in vitro ADME properties, and computational analysis provided valuable insight into the origins of the observed activity profiles.
View Article and Find Full Text PDFA series of trisubstituted thiazoles have been identified as potent inhibitors of Plasmodium falciparum (Pf) cGMP-dependent protein kinase (PfPKG) through template hopping from known Eimeria PKG (EtPKG) inhibitors. The thiazole series has yielded compounds with improved potency, kinase selectivity and good in vitro ADME properties. These compounds could be useful tools in the development of new anti-malarial drugs in the fight against drug resistant malaria.
View Article and Find Full Text PDFInflammation is an established contributor to disease and the NLRP3 inflammasome is emerging as a potential therapeutic target. A number of small molecule inhibitors of the NLRP3 pathway have been described. Here we analysed the most promising of these inhibitor classes side by side to assess relative potency and selectivity for their respective putative targets.
View Article and Find Full Text PDFTo combat drug resistance, new chemical entities are urgently required for use in next generation anti-malarial combinations. We report here the results of a medicinal chemistry programme focused on an imidazopyridine series targeting the Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG). The most potent compound (ML10) has an IC of 160 pM in a PfPKG kinase assay and inhibits P.
View Article and Find Full Text PDFImidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes.
View Article and Find Full Text PDFAutophagy is a cell-protective and degradative process that recycles damaged and long-lived cellular components. Cancer cells are thought to take advantage of autophagy to help them to cope with the stress of tumorigenesis; thus targeting autophagy is an attractive therapeutic approach. However, there are currently no specific inhibitors of autophagy.
View Article and Find Full Text PDFPfCDPK1 is a Plasmodium falciparum calcium-dependent protein kinase, which has been identified as a potential target for novel antimalarial chemotherapeutics. In order to further investigate the role of PfCDPK1, we established a high-throughput in vitro biochemical assay and used it to screen a library of over 35,000 small molecules. Five chemical series of inhibitors were initially identified from the screen, from which series 1 and 2 were selected for chemical optimization.
View Article and Find Full Text PDFA structure-guided design approach using a homology model of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) was used to improve the potency of a series of imidazopyridazine inhibitors as potential antimalarial agents. This resulted in high affinity compounds with PfCDPK1 enzyme IC50 values less than 10 nM and in vitro P. falciparum antiparasite EC50 values down to 12 nM, although these compounds did not have suitable ADME properties to show in vivo efficacy in a mouse model.
View Article and Find Full Text PDFThe structural diversity and SAR in a series of imidazopyridazine inhibitors of Plasmodium falciparum calcium dependent protein kinase 1 (PfCDPK1) has been explored and extended. The opportunity to further improve key ADME parameters by means of lowering logD was identified, and this was achieved by replacement of a six-membered (hetero)aromatic linker with a pyrazole. A short SAR study has delivered key examples with useful in vitro activity and ADME profiles, good selectivity against a human kinase panel and improved levels of lipophilic ligand efficiency.
View Article and Find Full Text PDFA series of imidazopyridazines which are potent inhibitors of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) was identified from a high-throughput screen against the isolated enzyme. Subsequent exploration of the SAR and optimisation has yielded leading members which show promising in vitro anti-parasite activity along with good in vitro ADME and selectivity against human kinases. Initial in vivo testing has revealed good oral bioavailability in a mouse PK study and modest in vivo efficacy in a Plasmodium berghei mouse model of malaria.
View Article and Find Full Text PDFA high-throughput screen against PknB, an essential serine-threonine protein kinase present in Mycobacterium tuberculosis (M. tuberculosis), allowed the identification of an aminoquinazoline inhibitor which was used as a starting point for SAR investigations. Although a significant improvement in enzyme affinity was achieved, the aminoquinazolines showed little or no cellular activity against M.
View Article and Find Full Text PDFWe report on the characterization of the timing stability of passively mode-locked discrete mode diode laser sources. These are edge-emitting devices with a spatially varying refractive index profile for spectral filtering. Two devices with a mode-locking frequency of 100 GHz are characterized.
View Article and Find Full Text PDFA numerical study of threshold gain and modal dispersion in integrated semiconductor laser optical frequency comb sources is presented. We consider an example device where one of the cleaved facets of the laser is replaced by a short Bragg grating section and show that as many as 16 modes can be selected at the first harmonic of the underlying Fabry-Perot cavity. An intracavity approach to limiting the grating-induced dispersion that can be implemented directly through the grating profile is demonstrated.
View Article and Find Full Text PDFPknB is an essential serine/threonine kinase of Mycobacterium tuberculosis with possible roles in a number of signalling pathways involved in cell division and metabolism. We screened a library of >50,000 compounds for inhibitors of the in vitro phosphorylation of GarA (Rv1827) by PknB and identified a number of inhibitors. A program of synthetic medicinal chemistry was subsequently conducted around one class of inhibitors and was successful in generating ATP competitive inhibitors with potency in the nanomolar range.
View Article and Find Full Text PDFWe demonstrate passive harmonic mode locking of a quantum-well laser diode designed to support a discrete comb of Fabry-Perot modes. Spectral filtering of the mode spectrum was achieved using a nonperiodic patterning of the cavity effective index. By selecting six modes spaced at twice the fundamental mode spacing, near-transform-limited pulsed output with 2 ps pulse duration was obtained at a repetition rate of 100 GHz.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2010
Synthesis of a number of bicyclic five-membered ring derivatives of gabapentin led to the identification of two compounds, (-)-(11A) and (20A) which both had an excellent level of potency against alpha(2)delta and were profiled in an in vivo model of neuropathic pain.
View Article and Find Full Text PDFA range of 3,4-alkylated five-membered ring derivatives of gabapentin were synthesised. One compound (21) had an excellent level of potency against alpha(2)delta and was profiled in in vivo models of pain and anxiety.
View Article and Find Full Text PDFA range of 3-alkylated five-membered ring derivatives of Gabapentin were synthesized and several were found to have good levels of potency against the alpha2delta calcium subunit of a voltage-gated calcium channel. Two compounds were profiled in in vivo models of pain and anxiety.
View Article and Find Full Text PDFMycobacterium tuberculosis has an on-going impact on global public health and new therapeutics to treat tuberculosis are urgently required. The emergence of drug resistant tuberculosis poses a serious threat to the control of this pathogen, and the development of drugs that are active against the resistant strains is vital. A medium-throughput assay using the Alamar Blue reagent was set-up to identify novel inhibitors of M.
View Article and Find Full Text PDFThe SAR of a series of novel pyrido[3,4-d]pyramid-4-ylamine mGluR1 antagonists is described. The multiple of the unbound K(i) in cerebrospinal fluid necessary to give morphine like analgesic effects in an electromyograph pinch model in rodents is determined and the effect of structure on CNS penetration examined.
View Article and Find Full Text PDFThe most virulent form of malaria is caused by waves of replication of blood stages of the protozoan pathogen Plasmodium falciparum. The parasite divides within an intraerythrocytic parasitophorous vacuole until rupture of the vacuole and host-cell membranes releases merozoites that invade fresh erythrocytes to repeat the cycle. Despite the importance of merozoite egress for disease progression, none of the molecular factors involved are known.
View Article and Find Full Text PDF