Publications by authors named "Simon Merdivan"

The instability of various small molecules, vaccines and peptides in the human stomach is a complex challenge for oral drug delivery. Recently, a novel gastro-resistant capsule - the enTRinsic™ Drug Delivery Technology capsule - has been developed. In this work, the salivary tracer technique based on caffeine has been applied to study the in vivo disintegration of enTRinsic™ capsules in 16 healthy volunteers.

View Article and Find Full Text PDF

The process of disintegration is a crucial step in oral drug delivery with immediate release dosage forms. In this work, the salivary tracer technique was applied as a simple and inexpensive method for the investigation of the in vivo disintegration time of hard gelatin capsules filled with caffeine. The disintegration times observed with the salivary tracer technique were verified by magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Improving our knowledge about human gastrointestinal physiology and its impact on oral drug delivery is crucial for the development of new therapies and effective drug delivery systems. The aim of this study was to develop an in vivo tool to determine gastric emptying of water by administration of a caffeine as a tracer substance followed by subsequent saliva caffeine analysis. For this purpose, 35 mg of caffeine were given to six healthy volunteers after a 10 h overnight together with 240 mL of tap water either on a fasted stomach or 30 min after the high-caloric, high-fat breakfast recommended for bioavailability/bioequivalence (BA/BE) studies.

View Article and Find Full Text PDF

Ergosterol peroxide (EP; 5α,8α-epidioxy-22E-ergosta-6,22-dien-3β-ol) is a C28-sterol and a component of many medicinal mushrooms. Since its discovery nearly a century ago, many sources and biological effects of this compound have been described. Effects range from antimicrobial to cytotoxic to immunosuppressive and other activities.

View Article and Find Full Text PDF

Tricholoma populinum Lange is an edible basidiomycete from the family Tricholomataceae. Extracts, fractions, and different metabolites isolated from the fruiting bodies of this mushroom were tested for degranulation-inhibiting activities on RBL-2H3 cells (rat basophils). Dichloromethane extracts decreased degranulation significantly, as did a fraction after column chromatography.

View Article and Find Full Text PDF

Agaritine, an aromatic hydrazine, is found as a secondary metabolite in mushroom species. It is among others suspected to exhibit genotoxic activity. This publication describes the validation of a method for the quantification of agaritine in mushrooms (i.

View Article and Find Full Text PDF