Ectodomain (EC) shedding defines the proteolytic removal of a membrane protein EC and acts as an important molecular switch in signaling and other cellular processes. Using tumor necrosis factor (TNF)α as a model substrate, we identify a non-canonical shedding activity of SPPL2a, an intramembrane cleaving aspartyl protease of the GxGD type. Proline insertions in the TNFα transmembrane (TM) helix strongly increased SPPL2a non-canonical shedding, while leucine mutations decreased this cleavage.
View Article and Find Full Text PDFγ-Secretase is an intramembrane aspartyl-protease catalyzing the final step in the regulated intramembrane proteolysis of a large number of single-span type-1 transmembrane proteins. The most extensively studied substrates are the amyloid-β precursor protein (APP) and the NOTCH receptors. An important technique for the characterization of interactions and conformational changes enabling γ-secretase to perform hydrolysis within the confines of the membrane are molecular dynamics simulations on different time and length scales.
View Article and Find Full Text PDFIntramembrane cleavage of the β-amyloid precursor protein C99 substrate by γ-secretase is implicated in Alzheimer's disease pathogenesis. Biophysical data have suggested that the N-terminal part of the C99 transmembrane domain (TMD) is separated from the C-terminal cleavage domain by a di-glycine hinge. Because the flexibility of this hinge might be critical for γ-secretase cleavage, we mutated one of the glycine residues, G38, to a helix-stabilizing leucine and to a helix-distorting proline.
View Article and Find Full Text PDF