IEEE Trans Ultrason Ferroelectr Freq Control
June 2024
Intraventricular vector flow mapping (iVFM) seeks to enhance and quantify color Doppler in cardiac imaging. In this study, we propose novel alternatives to the traditional iVFM optimization scheme by utilizing physics-informed neural networks (PINNs) and a physics-guided nnU-Net-based supervised approach. When evaluated on simulated color Doppler images derived from a patient-specific computational fluid dynamics model and in vivo Doppler acquisitions, both approaches demonstrate comparable reconstruction performance to the original iVFM algorithm.
View Article and Find Full Text PDFObjective: The COVID-19 pandemic indirectly affected other communicable diseases, such as human immunodeficiency virus (HIV) infection. The aim of this paper was to evaluate the impact of the COVID-19 pandemic on the epidemiological surveillance of HIV through epidemiological indicators.
Methods: Data collected in the New HIV Diagnosis Information System (SINIVIH, acronym in Spanish) in the period 2013-2021 was analyzed.
Two well-established numerical representations of the coagulation cascade either initiated by the intrinsic system (Chatterjee et al., PLOS Computational Biology 2010) or the extrinsic system (Butenas et al., Journal of Biological Chemistry, 2004) were compared with thrombin generation assays under realistic pathological conditions.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
November 2023
The heterogeneous model developed by Berod et al [Int J Numer Method Biomed Eng 38, 2021] for representing the hemodynamic effects of endovascular prostheses is applied to a series of 10 patient specific cerebral aneurysms, 6 being treated by flow diverters, 4 being equipped with WEBs. Two markers correlated with the medical outcome of the treatment are used to assess the potential of the model, namely the saccular mean velocity and the inflow rate at the neck of the aneurysm. The comparison with the corresponding wire-resolved simulations is very favorable in both cases, and the model-based simulations also retrieve the jetting-type flows generated downstream of the struts.
View Article and Find Full Text PDFShort-range exposure to airborne virus-laden respiratory droplets is an effective transmission route of respiratory diseases, as exemplified by Coronavirus Disease 2019 (COVID-19). In order to assess the risks associated with this pathway in daily-life settings involving tens to hundreds of individuals, the chasm needs to be bridged between fluid dynamical simulations and population-scale epidemiological models. This is achieved by simulating droplet trajectories at the microscale in numerous ambient flows, coarse-graining their results into spatio-temporal maps of viral concentration around the emitter, and coupling these maps to field-data about pedestrian crowds in different scenarios (streets, train stations, markets, queues, and street cafés).
View Article and Find Full Text PDFCounting and sizing blood cells in hematological analyzers is achieved using the Coulter principle. The cells flow in a micro-aperture in which a strong electrical field is imposed, so that an electrical perturbation, called pulse, is measured each time a cell crosses the orifice. The pulses are expected to contain information on the shape and deformability of Red Blood Cells (RBCs), since recent studies state that RBCs rotate and deform in the micro-orifice.
View Article and Find Full Text PDFPurpose: To evaluate hemodynamic markers obtained by accelerated GRAPPA (R = 2, 3, 4) and compressed sensing (R = 7.6) 4D flow MRI sequences under complex flow conditions.
Methods: The accelerated 4D flow MRI scans were performed on a pulsatile flow phantom, along with a nonaccelerated fully sampled k-space acquisition.
. Intraventricular vector flow mapping (VFM) is a velocimetric technique for retrieving two-dimensional velocity vector fields of blood flow in the left ventricular cavity. This method is based on conventional color Doppler imaging, which makesVFM compatible with the clinical setting.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2022
Color Doppler imaging (CDI) is the modality of choice for simultaneous visualization of myocardium and intracavitary flow over a wide scan area. This visualization modality is subject to several sources of error, the main ones being aliasing and clutter. Mitigation of these artifacts is a major concern for better analysis of intracardiac flow.
View Article and Find Full Text PDFColor Doppler by transthoracic echocardiography creates two-dimensional fan-shaped maps of blood velocities in the cardiac cavities. It is a one-component velocimetric technique since it only returns the velocity components parallel to the ultrasound beams. Intraventricular vector flow mapping (VFM) is a method to recover the blood velocity vectors from the Doppler scalar fields in an echocardiographic three-chamber view.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
February 2022
Numerical computations of hemodynamics inside intracranial aneurysms treated by endovascular braided devices such as flow-diverters contribute to understanding and improving such treatment procedures. Nevertheless, these simulations yield high computational and meshing costs due to the heterogeneity of length scales between the dense weave of the fine struts of the device and the arterial volume. Homogeneous strategies developed over the last decade to circumvent this issue substitute local dissipations due to the wires with a global effect in the form of a pressure-drop across the device surface.
View Article and Find Full Text PDFThis work assesses the risks of Covid-19 spread in diverse daily-life situations involving crowds of maskless pedestrians, mostly outdoors. More concretely, we develop a method to infer the global number of new infections from patchy observations, by coupling ad hoc spatial models for disease transmission via respiratory droplets to detailed field-data about pedestrian trajectories and head orientations. This allows us to rank the investigated situations by the infection risks that they present; importantly, the obtained hierarchy of risks is very largely conserved across transmission models: Street cafés present the largest average rate of new infections caused by an attendant, followed by busy outdoor markets, and then metro and train stations, whereas the risks incurred while walking on fairly busy streets are comparatively quite low.
View Article and Find Full Text PDFThe Coulter principle is a widespread technique for sizing red blood cells (RBCs) in hematological analyzers. It is based on the monitoring of the electrical perturbations generated by cells passing through a micro-orifice, in which a concentrated electrical field is imposed by two electrodes. However, artifacts associated with near-wall passages in the sensing region are known to skew the statistics for RBCs sizing.
View Article and Find Full Text PDFA numerical approach is presented to efficiently simulate time-resolved 3D phase-contrast Magnetic resonance Imaging (or 4D Flow MRI) acquisitions under realistic flow conditions. The Navier-Stokes and Bloch equations are simultaneously solved with an Eulerian-Lagrangian formalism. A semi-analytic solution for the Bloch equations as well as a periodic particle seeding strategy are developed to reduce the computational cost.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2020
Many scientific reports document that asymptomatic and presymptomatic individuals contribute to the spread of COVID-19, probably during conversations in social interactions. Droplet emission occurs during speech, yet few studies document the flow to provide the transport mechanism. This lack of understanding prevents informed public health guidance for risk reduction and mitigation strategies, e.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
November 2019
In Coulter counters, cells counting and volumetry are achieved by monitoring their electrical print when they flow through a sensing zone. However, the volume measurement may be impaired by the cell dynamics, which may be difficult to control. In this paper, numerical simulations of the dynamics and electrical signature of red blood cells in a Coulter counter are presented, accounting for the deformability of the cells.
View Article and Find Full Text PDFDynamic self-organized structures with long-range order have been observed in emulsions and suspensions of particles under confined flows. Here, experiments on red blood cell suspensions under quasi-2D confined flows and numerical simulations were combined to explore long-distance self-organization as a function of the channel width, red blood cell concentration and flow rate. They reveal and quantitatively describe the existence of red blood cell long-range alignments and heterogeneous cross-stream concentration profiles characterized by red blood cell-enriched bands parallel to the flow.
View Article and Find Full Text PDFThrombus formation is one of the main issues in the development of blood-contacting medical devices. This article focuses on the modeling of one aspect of thrombosis, the coagulation cascade, which is initiated by the contact activation at the device surface and forms thrombin. Models exist representing the coagulation cascade by a series of reactions, usually solved in quiescent plasma.
View Article and Find Full Text PDFSeveral well-resolved 4D Flow MRI acquisitions of an idealized rigid flow phantom featuring an aneurysm, a curved channel as well as a bifurcation were performed under pulsatile regime. The resulting hemodynamics were processed to remove MRI artifacts. Subsequently, they were compared with CFD predictions computed on the same flow domain, using an in-house high-order low dissipative flow solver.
View Article and Find Full Text PDFA recent study of red blood cells (RBCs) in shear flow [Lanotte et al., Proc. Natl.
View Article and Find Full Text PDFBiomech Model Mechanobiol
June 2018
Thrombosis is a major concern in blood-coated medical devices. Contact activation, which is the initial part of the coagulation cascade in device-related thrombosis, is not considered in current thrombus formation models. In the present study, pro-coagulant reactions including the contact activation system are coupled with a fluid solver in order to evaluate the potential of the contact system to initiate thrombin production.
View Article and Find Full Text PDFThe complex fluid-structure interaction problem associated with the flow of blood through a heart valve with flexible leaflets is investigated both experimentally and numerically. In the experimental test rig, a pulse duplicator generates a pulsatile flow through a biomimetic rigid aortic root where a model of aortic valve with polymer flexible leaflets is implanted. High-speed recordings of the leaflets motion and particle image velocimetry measurements were performed together to investigate the valve kinematics and the dynamics of the flow.
View Article and Find Full Text PDFWe propose a regularized least-squares method for reconstructing 2D velocity vector fields within the left ventricular cavity from single-view color Doppler echocardiographic images. Vector flow mapping is formulated as a quadratic optimization problem based on an [Formula: see text]-norm minimization of a cost function composed of a Doppler data-fidelity term and a regularizer. The latter contains three physically interpretable expressions related to 2D mass conservation, Dirichlet boundary conditions, and smoothness.
View Article and Find Full Text PDFBiomech Model Mechanobiol
October 2017
Stretching red blood cells using optical tweezers is a way to characterize the mechanical properties of their membrane by measuring the size of the cell in the direction of the stretching (axial diameter) and perpendicularly (transverse diameter). Recently, such data have been used in numerous publications to validate solvers dedicated to the computation of red blood cell dynamics under flow. In the present study, different mechanical models are used to simulate the stretching of red blood cells by optical tweezers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2016
Blood viscosity decreases with shear stress, a property essential for an efficient perfusion of the vascular tree. Shear thinning is intimately related to the dynamics and mutual interactions of RBCs, the major component of blood. Because of the lack of knowledge about the behavior of RBCs under physiological conditions, the link between RBC dynamics and blood rheology remains unsettled.
View Article and Find Full Text PDF