Background: Electroencephalography (EEG) can be used in neonates to measure brain activity changes that are evoked by noxious events, such as clinically required immunisations, cannulation and heel lancing for blood tests. EEG provides an alternative approach to infer pain experience in infants compared with more commonly used behavioural and physiological pain assessments. Establishing the generalisability and construct validity of these measures will help corroborate the use of brain-derived outcomes to evaluate the efficacy of new or existing pharmacological and non-pharmacological methods to treat neonatal pain.
View Article and Find Full Text PDF. Automated detection of artefact in stimulus-evoked electroencephalographic (EEG) data recorded in neonates will improve the reproducibility and speed of analysis in clinical research compared with manual identification of artefact. Some studies use very short, single-channel epochs of EEG data with little recorded EEG per infant-for example because the clinical vulnerability of the infants limits access for recording.
View Article and Find Full Text PDFBackground: Touch interventions such as massage and skin-to-skin contact relieve neonatal pain. The Parental touch trial (Petal) aimed to assess whether parental stroking of their baby before a clinically required heel lance, at a speed of approximately 3 cm/s to optimally activate C-tactile nerve fibres, provides effective pain relief.
Methods: Petal is a multicentre, randomised, parallel-group interventional superiority trial conducted in the John Radcliffe Hospital (Oxford University Hospitals NHS Foundation Trust, Oxford, UK) and the Royal Devon and Exeter Hospital (Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK).
Objective: We conducted a systematic review to investigate electroencephalography (EEG) changes during periods of acute respiratory events such as apnoea and the effect of respiratory stimulants on EEG features in infants.
Methods: Studies examining respiration and EEG-recorded brain activity in human neonates between 28 and 42 weeks postmenstrual age were included. Two reviewers independently screened all records and included studies were assessed using the Joanna Briggs Institute Critical Appraisal Tool.
J Rehabil Assist Technol Eng
July 2019
Introduction: Functional electrical stimulation uses clinician-set parameters to modify stimulation. This study aimed to investigate whether timing parameters in the ODFS Pace functional electrical stimulation device have an effect on the gait of the general population of functional electrical stimulation users who have a foot drop.
Methods: Twelve functional electrical stimulation users with foot drop resulting from upper motor neurone disorders were recruited from the functional electrical stimulation Service in Leeds, UK.