Publications by authors named "Simon M Mudd"

Rivers form characteristic branching patterns as they drain landscapes. Past work has shown that the angles formed between confluent channels at river junctions vary with climate aridity-but why this occurs is contested. We show how this climate sensitivity can be explained by the principle that river networks self-organize toward "optimal" configurations that minimize the hydraulic expenditure of energy.

View Article and Find Full Text PDF

Shallow landslides, triggered by extreme rainfall, are a significant hazard in mountainous landscapes. The hazard posed by shallow landslides depends on the availability and strength of colluvial material in landslide source areas and the frequency and intensity of extreme rainfall events. Here we investigate how the time taken to accumulate colluvium affects landslide triggering rate in the Southern Appalachian Mountains, USA and how this may affect future landslide hazards.

View Article and Find Full Text PDF

The physical characteristics of landscapes place fundamental constraints on vegetation growth and ecosystem function. In actively eroding landscapes, many of these characteristics are controlled by long-term erosion rates: increased erosion rates generate steeper topography and reduce the depth and extent of weathering, limiting moisture storage capacity and impacting nutrient availability. Despite the potentially important bottom-up control that erosion rates place on substrate characteristics, the relationship between the two is largely unexplored.

View Article and Find Full Text PDF

Earth's surface archives the combined history of tectonics and erosion, which tend to roughen landscapes, and sediment transport and deposition, which smooth them. We analyzed hillslope morphology in the tectonically active Dragon's Back Pressure Ridge in California, United States, to assess whether tectonic uplift history can be reconstructed using measurable attributes of hillslope features within landscapes. Hilltop curvature and hillslope relief mirror measured rates of vertical displacement caused by tectonic forcing, and their relationships are consistent with those expected when idealizing hillslope transport as a nonlinear diffusion process.

View Article and Find Full Text PDF

About half of annual marine carbon burial takes place in shallow water ecosystems where geomorphic and ecological stability is driven by interactions between the flow of water, vegetation growth and sediment transport. Although the sensitivity of terrestrial and deep marine carbon pools to climate change has been studied for decades, there is little understanding of how coastal carbon accumulation rates will change and potentially feed back on climate. Here we develop a numerical model of salt marsh evolution, informed by recent measurements of productivity and decomposition, and demonstrate that competition between mineral sediment deposition and organic-matter accumulation determines the net impact of climate change on carbon accumulation in intertidal wetlands.

View Article and Find Full Text PDF
Article Synopsis
  • * Numerical models suggest that early ice sheets formed on the Gamburtsev mountains, but our limited understanding of their current topography leaves uncertainties regarding early glaciation processes.
  • * Recent radar data indicates that the area at Dome A features Alpine topography with ancient river valleys, suggesting that this landscape was likely shaped during the early stages of glaciation and has been preserved beneath ice for approximately 14 million years.
View Article and Find Full Text PDF