Publications by authors named "Simon Lukas"

Article Synopsis
  • Long-term factor Xa (FXa) inhibition shows promise in reducing inflammation and improving outcomes after heart attacks and strokes by impacting platelet function.
  • In experiments with mice, chronic FXa inhibition led to smaller brain and heart injury sizes and better cardiac function compared to acute inhibition.
  • Analysis of patients revealed that those receiving FXa inhibitors had reduced infarct sizes and showed changes in platelet proteins that suggest decreased release of substances that promote inflammation and clotting.
View Article and Find Full Text PDF
Article Synopsis
  • MYC is a critical driver of cancer that enhances gene expression and increases RNA production, contributing to tumor growth and survival.
  • The study reveals that MYC triggers RNA degradation, leading to toxic byproducts that cause cancer cell death, indicating a new mechanism for targeting MYC-driven cancers.
  • Therapeutic strategies that intensify the breakdown of RNA could serve as effective treatments for aggressive cancers like triple-negative breast cancer (TNBC) that rely on MYC.
View Article and Find Full Text PDF

Sporadic early-onset Alzheimer's disease (sEOAD) represents a significant but less-studied subtype of Alzheimer's disease (AD). Here, we generated a single-nucleus multiome atlas derived from the postmortem prefrontal cortex, entorhinal cortex, and hippocampus of nine individuals with or without sEOAD. Comprehensive analyses were conducted to delineate cell type-specific transcriptomic changes and linked candidate -regulatory elements (cCREs) across brain regions.

View Article and Find Full Text PDF

Sporadic early-onset Alzheimer's disease (sEOAD) represents a significant but less-studied subtype of Alzheimer's disease (AD). Here, we generated a single-nucleus multiome atlas derived from the postmortem prefrontal cortex, entorhinal cortex, and hippocampus of nine individuals with or without sEOAD. Comprehensive analyses were conducted to delineate cell type-specific transcriptomic changes and linked candidate regulatory elements (cCREs) across brain regions.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD) is a chronic lung disease commonly affecting premature infants, with limited therapeutic options and increased long-term consequences. Adrenomedullin (), a proangiogenic peptide hormone, has been found to protect rodents against experimental BPD. This study aims to elucidate the molecular and cellular mechanisms through which influences BPD pathogenesis using a lipopolysaccharide (LPS)-induced model of experimental BPD in mice.

View Article and Find Full Text PDF

Analysis of lung alveolar type 2 (AT2) progenitor stem cells has highlighted fundamental mechanisms that direct their differentiation into alveolar type 1 cells (AT1s) in lung repair and disease. However, microRNA (miRNA) mediated post-transcriptional mechanisms which govern this nexus remain understudied. We show here that the miRNA family serves a homeostatic role in governance of AT2 quiescence, specifically by preventing the uncontrolled accumulation of AT2 transitional cells and by promoting AT1 differentiation to safeguard the lung from spontaneous alveolar destruction and fibrosis.

View Article and Find Full Text PDF

Orofacial clefts (OFCs) are common congenital birth defects with various etiologies, including genetic variants. Online Mendelian Inheritance in Man (OMIM) annotated several hundred genes involving OFCs. Furthermore, several hundreds of de novo variants (DNVs) have been identified from individuals with OFCs.

View Article and Find Full Text PDF

Orofacial clefts (OFCs) are among the most common human congenital birth defects. Previous multiethnic studies have identified dozens of associated loci for both cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP). Although several nearby genes have been highlighted, the "casual" variants are largely unknown.

View Article and Find Full Text PDF

Brexucabtagene autoleucel CAR-T therapy is highly efficacious in overcoming resistance to Bruton's tyrosine kinase inhibitors (BTKi) in mantle cell lymphoma. However, many patients relapse post CAR-T therapy with dismal outcomes. To dissect the underlying mechanisms of sequential resistance to BTKi and CAR-T therapy, we performed single-cell RNA sequencing analysis for 66 samples from 25 patients treated with BTKi and/or CAR-T therapy and conducted in-depth bioinformatics™ analysis.

View Article and Find Full Text PDF

Perturbations in gene regulation during palatogenesis can lead to cleft palate, which is among the most common congenital birth defects. Here, we perform single-cell multiome sequencing and profile chromatin accessibility and gene expression simultaneously within the same cells (n = 36,154) isolated from mouse secondary palate across embryonic days (E) 12.5, E13.

View Article and Find Full Text PDF

Microbial communities reside at the interface between humans and their environment. Whether the microbiome can be leveraged to gain information on human interaction with museum objects is unclear. To investigate this, we selected objects from the Museum für Naturkunde and the Pergamonmuseum in Berlin, Germany, varying in material and size.

View Article and Find Full Text PDF

Genetic variation in the mitochondrial genome is linked to important biological functions and various human diseases. Recent progress in single-cell genomics has established single-cell RNA sequencing (scRNAseq) as a popular and powerful technique to profile transcriptomics at the cellular level. While most studies focus on deciphering gene expression, polymorphisms including mitochondrial variants can also be readily inferred from scRNAseq.

View Article and Find Full Text PDF

Infectious agents have been long considered to play a role in the pathogenesis of neurological diseases as part of the interaction between genetic susceptibility and the environment. The role of bacteria in CNS autoimmunity has also been highlighted by changes in the diversity of gut microbiota in patients with neurological diseases such as Parkinson's disease, Alzheimer disease and multiple sclerosis, emphasizing the role of the gut-brain axis. We discuss the hypothesis of a brain microbiota, the BrainBiota: bacteria living in symbiosis with brain cells.

View Article and Find Full Text PDF

The nuclear pore complex (NPC) comprises more than 30 nucleoporins (NUPs) and is a hallmark of eukaryotes. NUPs have been suggested to be important in regulating gene transcription and 3D genome organization. However, evidence in support of their direct roles remains limited.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) is revolutionizing the study of complex and dynamic cellular mechanisms. However, cell type annotation remains a main challenge as it largely relies on a priori knowledge and manual curation, which is cumbersome and subjective. The increasing number of scRNA-seq datasets, as well as numerous published genetic studies, has motivated us to build a comprehensive human cell type reference atlas.

View Article and Find Full Text PDF

Background: Knee ligament sprains are a common reason for emergency-room visits. Initially, the often difficult physical examination provides limited information, creating a risk of missing cruciate-ligament injuries, which can result in substantial functional impairments. No simple tool is available to emergency and primary-care physicians for decisions regarding specialist referral of patients with knee ligament sprains.

View Article and Find Full Text PDF

Droplet-based single-cell RNA sequencing (scRNA-seq) has significantly increased the number of cells profiled per experiment and revolutionized the study of individual transcriptomes. However, to maximize the biological signal, robust computational methods are needed to distinguish cell-free from cell-containing droplets. Here, we introduce a novel cell-calling algorithm called EmptyNN, which trains a neural network based on positive-unlabeled learning for improved filtering of barcodes.

View Article and Find Full Text PDF

Single-cell RNA sequencing of the bronchoalveolar lavage fluid (BALF) samples from COVID-19 patients has enabled us to examine gene expression changes of human tissue in response to the SARS-CoV-2 virus infection. However, the underlying mechanisms of COVID-19 pathogenesis at single-cell resolution, its transcriptional drivers, and dynamics require further investigation. In this study, we applied machine learning algorithms to infer the trajectories of cellular changes and identify their transcriptional programs.

View Article and Find Full Text PDF

Background: Arrhythmogenic cardiomyopathy (ACM) manifests with sudden death, arrhythmias, heart failure, apoptosis, and myocardial fibro-adipogenesis. The phenotype typically starts at the epicardium and advances transmurally. Mutations in genes encoding desmosome proteins, including DSP (desmoplakin), are major causes of ACM.

View Article and Find Full Text PDF

The correspondence of cell state changes in diseased organs to peripheral protein signatures is currently unknown. Here, we generated and integrated single-cell transcriptomic and proteomic data from multiple large pulmonary fibrosis patient cohorts. Integration of 233,638 single-cell transcriptomes (n = 61) across three independent cohorts enabled us to derive shifts in cell type proportions and a robust core set of genes altered in lung fibrosis for 45 cell types.

View Article and Find Full Text PDF

Case: A 20-year-old woman presented with symptomatic instability secondary to traumatic anterior cruciate ligament (ACL) rupture. Arthroscopic ACL reconstruction was performed using a 4-strand semitendinosus autograft harvested using a posterior approach. At her 2-month follow-up, a painful mass was palpable, and a hernia of the medial gastrocnemius was confirmed by ultrasound.

View Article and Find Full Text PDF

Many oncogenic insults deregulate RNA splicing, often leading to hypersensitivity of tumors to spliceosome-targeted therapies (STTs). However, the mechanisms by which STTs selectively kill cancers remain largely unknown. Herein, we discover that mis-spliced RNA itself is a molecular trigger for tumor killing through viral mimicry.

View Article and Find Full Text PDF

Extracellular RNAs present in biofluids have emerged as potential biomarkers for disease. Where most studies focus on blood-derived fluids, other biofluids may be more informative. We present an atlas of messenger, circular, and small RNA transcriptomes of a comprehensive collection of 20 human biofluids.

View Article and Find Full Text PDF