Publications by authors named "Simon Lopez Marino"

Article Synopsis
  • The study focuses on the energy band alignment between CdS (n-type) and CuZnSnS (CZTS, p-type) solar cell materials, particularly how Ag alloying affects this interface and overall efficiency.
  • Ag alloying reduces defects in bulk CZTS, but its impact on the interface with CdS has not been well explored until now, using techniques like ultraviolet and X-ray photoelectron spectroscopy to analyze changes.
  • Results show significant shifts in electronic properties at the interface, revealing a cliff-like band alignment and indicating larger charge depletion widths with Ag alloying, which opens up new potential for future optoelectronic device applications.
View Article and Find Full Text PDF

In kesterite CuZnSn(S,Se) (CZTSSe) solar cell research, an asymmetric crystallization profile is often obtained after annealing, resulting in a bilayered - or double-layered - CZTSSe absorber. So far, only segregated pieces of research exist to characterize the appearance of this double layer, its formation dynamics, and its effect on the performances of devices. In this work, we review the existing research on double-layered kesterites and evaluate the different mechanisms proposed.

View Article and Find Full Text PDF

Cu2SnZn(S,Se)4 (CZTSSe) solar cells based on earth abundant and nontoxic elements currently achieve efficiencies exceeding 12%. It has been reported that, to obtain high efficiency devices, a post thermal treatment of absorbers or devices at temperatures ranging between 150 and 400 °C (post low temperature treatment, PLTT) is advisable. Recent findings point toward a beneficial passivation of grain boundaries with SnOx or Cu-depleted surface and grain boundaries during the PLTT process, but no investigation regarding alkali doping is available, even though alkali dynamics, especially Na, are systematically reported to be crucial within the field.

View Article and Find Full Text PDF

The control and removal of secondary phases is one of the major challenges for the development of Cu2ZnSn(S,Se)4 (CZTSSe)-based solar cells. Although etching processes have been developed for Cu(S,Se), Zn(S,Se), and CuSn(S,Se) secondary phases, so far very little attention has been given to the role of Sn(S,Se). In this paper, we report a chemical route using a yellow (NH4)2S solution to effectively remove Sn(S,Se).

View Article and Find Full Text PDF

Cu2ZnSnSe4 kesterite compounds are some of the most promising materials for low-cost thin-film photovoltaics. However, the synthesis of absorbers for high-performing devices is still a complex issue. So far, the best devices rely on absorbers grown in a Zn-rich and Cu-poor environment.

View Article and Find Full Text PDF

Pentenary Cu2ZnSn(S(y)Se(1-y))4 (kesterite) photovoltaic absorbers are synthesized by a one-step annealing process from copper-poor and zinc-rich precursor metallic stacks prepared by direct-current magnetron sputtering deposition. Depending on the chalcogen source--mixtures of sulfur and selenium powders, or selenium disulfide--as well as the annealing temperature and pressure, this simple methodology permits the tuning of the absorber composition from sulfur-rich to selenium-rich in one single annealing process. The impact of the thermal treatment variables on chalcogenide incorporation is investigated.

View Article and Find Full Text PDF