Native chemical ligation (NCL) is an invaluable tool in the total chemical synthesis of proteins. Ligation auxiliaries overcome the requirement for cysteine. However, the reported auxiliaries remained limited to glycine-containing ligation sites and the acidic conditions applied for cleavage of the typically applied N-benzyl-type linkages promote side reactions.
View Article and Find Full Text PDFBioorg Med Chem Lett
March 2016
Native chemical ligation (NCL) proceeds via a S-N acyl shift and, therefore, requires N-terminal cysteine. N(α)-auxiliaries have long been used to enable NCL beyond cysteine. However, the reversibility of the S-N acyl shift under the acidic conditions used to remove the commonly applied N-benzyl auxiliaries limits the scope of this reaction.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2015
Native chemical ligation enables the chemical synthesis of proteins. Previously, thiol-containing auxiliary groups have been used to extend the reaction scope beyond N-terminal cysteine residues. However, the N-benzyl-type auxiliaries used so far result in rather low reaction rates.
View Article and Find Full Text PDFImaging the dynamics of RNA in living cells is usually performed by means of transgenic approaches that require modification of RNA targets and cells. Fluorogenic hybridization probes would also allow the analysis of wild-type organisms. We developed nuclease-resistant DNA forced intercalation (FIT) probes that combine the high enhancement of fluorescence upon hybridization with the high brightness required to allow tracking of individual ribonucleotide particles (RNPs).
View Article and Find Full Text PDF