Publications by authors named "Simon Lamb"

Satellite-based measuring systems are making it possible to monitor deformation of the Earth's surface at a high spatial resolution over periods of several decades and a significant fraction of the seismic cycle. It is widely assumed that this short-term deformation directly reflects the long-term pattern of crustal deformation, although modified in detail by local elastic effects related to locking on individual faults. This way, short-term deformation is often jointly inverted with long-term estimates of fault slip rates, or even stress, over periods of 10 s to 100 s kyrs.

View Article and Find Full Text PDF

New passive- and active-source seismic experiments reveal unusually high mantle P-wave speeds that extend beneath the remnants of the world's largest known large igneous province, making up the 120-million-year-old Ontong-Java-Manihiki-Hikurangi Plateau. Sub-Moho P phases of ~8.8 ± 0.

View Article and Find Full Text PDF

Increasingly, studies are revealing that endocrine disrupting chemicals (EDCs) can alter animal behavior. Early life exposure to EDCs may permanently alter phenotypes through to adulthood. In addition, the effects of EDCs may not be isolated to a single generation - offspring may indirectly be impacted, via non-genetic processes.

View Article and Find Full Text PDF

Oceanic crust is created by the extraction of molten rock from underlying mantle at the seafloor 'spreading centres' found between diverging tectonic plates. Modelling studies have suggested that mantle melting can occur through decompression as the mantle flows upwards beneath spreading centres, but direct observation of this process is difficult beneath the oceans. Continental rifts, however-which are also associated with mantle melt production-are amenable to detailed measurements of their short-term kinematics using geodetic techniques.

View Article and Find Full Text PDF

Causal links between the rise of a large mountain range and climate have often been considered to work in one direction, with significant uplift provoking climate change. Here we propose a mechanism by which Cenozoic climate change could have caused the rise of the Andes. Based on considerations of the force balance in the South American lithosphere, we suggest that the height of, and tectonics in, the Andes are strongly controlled both by shear stresses along the plate interface in the subduction zone and by buoyancy stress contrasts between the trench and highlands, and shear stresses in the subduction zone depend on the amount of subducted sediments.

View Article and Find Full Text PDF