This paper explores the development of 3D-printed self-sensing Ultra-High Performance Concrete (UHPC) by incorporating graphite (G) powder, milled carbon microfiber (MCMF), and chopped carbon microfiber (CCMF) as additives into the UHPC matrix to enhance piezoresistive properties while maintaining workability for 3D printing. Percolation curves were established to identify optimal filler inclusion levels, and a series of compressive tests, including quasi-static cyclic, dynamic cyclic, and monotonic compressive loading, were conducted to evaluate the piezoresistive and mechanical performance of 29 different mix designs. It was found that incorporating G powder improved the conductivity of the UHPC but decreased compressive strength for both mold-cast and 3D-printed specimens.
View Article and Find Full Text PDFUtility as-built plans, which typically provide information about underground utilities' position and spatial locations, are known to comprise inaccuracies. Over the years, the reliance on utility investigations using an array of sensing equipment has increased in an attempt to resolve utility as-built inaccuracies and mitigate the high rate of accidental underground utility strikes during excavation activities. Adapting data fusion into utility engineering and investigation practices has been shown to be effective in generating information with improved accuracy.
View Article and Find Full Text PDFAtomic force microscopy (AFM) is an analytical surface characterization tool that reveals the surface topography at a nanometer length scale while probing local chemical, mechanical, and even electronic sample properties. Both contact (performed with a constant deflection of the cantilever probe) and dynamic operation modes (enabled by demodulation of the oscillation signal under tip-sample interaction) can be employed to conduct AFM-based measurements. Although surface topography is accessible regardless of the operation mode, the resolution and the availability of the quantified surface properties depend on the mode of operation.
View Article and Find Full Text PDFRecent advances in soft polymer materials have enabled the design of soft machines and devices at multiple scales. Their intrinsic compliance and robust mechanical properties and the potential for a rapid scaling of the production process make them ideal candidates for flexible and stretchable electronics and sensors. Large-area electronics (LAE) made from soft polymer materials that are capable of sustaining large deformations and covering large surfaces and are applicable to complex and irregular surfaces and transducing deformations into readable signals have been explored for structural health monitoring (SHM) applications.
View Article and Find Full Text PDFAccurately identifying the location and depth of buried utility assets became a considerable challenge in the construction industry, for which accidental strikes can cause important economic losses and safety concerns. While the collection of as-built utility locations is becoming more accurate, there still exists an important need to be capable of accurately detecting buried utilities in order to eliminate risks associated with digging. Current practices typically involve the use of trained agents to survey and detect underground utilities at locations of interest, which is a costly and time-consuming process.
View Article and Find Full Text PDFThis paper presents a field implementation of the structural health monitoring (SHM) of fatigue cracks for steel bridge structures. Steel bridges experience fatigue cracks under repetitive traffic loading, which pose great threats to their structural integrity and can lead to catastrophic failures. Currently, accurate and reliable fatigue crack monitoring for the safety assessment of bridges is still a difficult task.
View Article and Find Full Text PDFThe authors have previously proposed corrugated soft elastomeric capacitors (cSEC) to create ultra compliant scalable strain gauges. The cSEC technology has been successfully demonstrated in engineering and biomechanical applications for in-plane strain measurements. This study extends work on the cSEC to evaluate its performance at measuring angular rotation when installed folded at the junction of two plates.
View Article and Find Full Text PDFSutures are ubiquitous medical devices for wound closures in human and veterinary medicine, and suture techniques are frequently evaluated by comparing tensile strengths in studies. Direct and nondestructive measurement of tensile force present in sutured biological skin tissue is a key challenge in biomechanical fields because of the unique and complex properties of each sutured skin specimen and the lack of compliant sensors capable of monitoring large levels of strain. The authors have recently proposed a soft elastomeric capacitor (SEC) sensor that consists of a highly compliant and scalable strain gauge capable of transducing geometric variations into a measurable change in capacitance.
View Article and Find Full Text PDFSystems experiencing high-rate dynamic events, termed high-rate systems, typically undergo accelerations of amplitudes higher than 100 g-force in less than 10 ms. Examples include adaptive airbag deployment systems, hypersonic vehicles, and active blast mitigation systems. Given their critical functions, accurate and fast modeling tools are necessary for ensuring the target performance.
View Article and Find Full Text PDFMultifunctional structural materials are very promising in the field of engineering. Particularly, their strain sensing ability draws much attention for structural health monitoring applications. Generally, strain sensing materials are produced by adding a certain amount of conductive fillers, around the so-called "percolation threshold", to the cement or composite matrix.
View Article and Find Full Text PDFSmart multifunctional composites exhibit enhanced physical and mechanical properties and can provide structures with new capabilities. The authors have recently initiated a research program aimed at developing new strain-sensing pavement materials enabling roadway-integrated weigh-in motion (WIM) sensing. The goal is to achieve an accurate WIM for infrastructure monitoring at lower costs and with enhanced durability compared to off-the-shelf solutions.
View Article and Find Full Text PDFRecent advances in hyperelastic materials and self-sensing sensor designs have enabled the creation of dense compliant sensor networks for the cost-effective monitoring of structures. The authors have proposed a sensing skin based on soft polymer composites by developing soft elastomeric capacitor (SEC) technology that transduces geometric variations into a measurable change in capacitance. A limitation of the technology is in its low gauge factor and lack of sensing directionality.
View Article and Find Full Text PDFSmart materials are promising technologies for reducing the instrumentation cost required to continuously monitor road infrastructures, by transforming roadways into multifunctional elements capable of self-sensing. This study investigates a novel algorithm empowering smart pavements with weigh-in-motion (WIM) characterization capabilities. The application domain of interest is a cementitious-based smart pavement installed on a bridge over separate sections.
View Article and Find Full Text PDFCracks in concrete structures can be indicators of important damage and may significantly affect durability. Their timely identification can be used to ensure structural safety and guide on-time maintenance operations. Structural health monitoring solutions, such as strain gauges and fiber optics systems, have been proposed for the automatic monitoring of such cracks.
View Article and Find Full Text PDFBackground: Suture materials and techniques are frequently evaluated in ex vivo studies by comparing tensile strengths. However, the direct measurement techniques to obtain the tensile forces in canine skin are not available, and, therefore, the conditions suture lines undergo is unknown. A soft elastomeric capacitor is used to monitor deformation in the skin over time by sensing strain.
View Article and Find Full Text PDFThe availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix mterials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation.
View Article and Find Full Text PDFEngineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer's convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems.
View Article and Find Full Text PDFThe phenomenological approach has a quasi-monopoly in the individual and subjectivity analyses in social sciences. However, the conceptual apparatus associated with this approach is very restrictive. The human being has to be understood as rational, conscious, intentional, interested, and autonomous.
View Article and Find Full Text PDFDuring their larval leptocephalus phase, newly hatched American eels undergo an extensive oceanic migration from the Sargasso Sea toward coastal and freshwater habitats. Their subsequent metamorphosis into glass eel is accompanied by drastic morphological and physiological changes preceding settlement over a wide geographic range. The main objective of this study was to compare RNA/DNA ratios and condition factor among glass eels in order to test the null hypothesis of no difference in physiological status and metabolic activity of glass eels at the outcome of their oceanic migration.
View Article and Find Full Text PDFStem Cell Rev Rep
September 2011
The domesticated horse represents substantial value for the related sports and recreational fields, and holds enormous potential as a model for a range of medical conditions commonly found in humans. Most notable of these are injuries to muscles, tendons, ligaments and joints. Induced pluripotent stem (iPS) cells have sparked tremendous hopes for future regenerative therapies of conditions that today are not possible to cure.
View Article and Find Full Text PDFAlthough putative horse embryonic stem (ES)-like cell lines have been obtained recently from in vivo-derived embryos, it is currently not known whether it is possible to obtain ES cell (ESC) lines from somatic cell nuclear transfer (SCNT) and parthenogenetic (PA) embryos. Our aim is to establish culture conditions for the derivation of autologous ESC lines for cell therapy studies in an equine model. Our results indicate that both the use of early-stage blastocysts with a clearly visible inner cell mass (ICM) and the use of pronase to dissect the ICM allow the derivation of a higher proportion of primary ICM outgrowths from PA and SCNT embryos.
View Article and Find Full Text PDFThis article examines the link between the domain and level of occupation, on the one hand, and use of media, including internet, on the other. It adds to this investigation an analysis of identity in its relation to media use and accessibility. It challenges the hypothesis of a strong correlation between level of occupation and use and accessibility to media.
View Article and Find Full Text PDF