Publications by authors named "Simon L Wadle"

Autism spectrum disorder (ASD) is often associated with social communication impairments and specific sound processing deficits, for example, problems in following speech in noisy environments. To investigate underlying neuronal processing defects located in the auditory cortex (AC), we performed two-photon Ca imaging in ( ) knock-out (KO) mice, a model for fragile X syndrome (FXS), the most common cause of hereditary ASD in humans. For primary AC (A1) and the anterior auditory field (AAF), topographic frequency representation was less ordered compared with control animals.

View Article and Find Full Text PDF

Auditory brainstem neurons in the lateral superior olive (LSO) receive excitatory input from the ipsilateral cochlear nucleus (CN) and inhibitory transmission from the contralateral CN via the medial nucleus of the trapezoid body (MNTB). This circuit enables sound localization using interaural level differences. Early studies have observed an additional inhibitory input originating from the ipsilateral side.

View Article and Find Full Text PDF

The auditory cortex (AC) modulates the activity of upstream pathways in the auditory brainstem via descending (corticofugal) projections. This feedback system plays an important role in the plasticity of the auditory system by shaping response properties of neurons in many subcortical nuclei. The majority of layer (L) 5 corticofugal neurons project to the inferior colliculus (IC).

View Article and Find Full Text PDF

The αδ3 auxiliary subunit of voltage-activated calcium channels is required for normal synaptic transmission and precise temporal processing of sounds in the auditory brainstem. In mice its loss additionally leads to an inability to distinguish amplitude-modulated tones. Furthermore, loss of function of αδ3 has been associated with autism spectrum disorder in humans.

View Article and Find Full Text PDF

Astrocytes and oligodendrocytes in different brain regions form panglial networks and the topography of such networks can correlate with neuronal topography and function. Astrocyte-oligodendrocyte networks in the lateral superior olive (LSO)-an auditory brainstem nucleus-were found to be anisotropic with a preferred orientation orthogonally to the tonotopic axis. We hypothesized that such a specialization might be present in other tonotopically organized brainstem nuclei, too.

View Article and Find Full Text PDF

Neuronal inhibition is mediated by glycine and/or GABA. Inferior colliculus (IC) neurons receive glycinergic and GABAergic inputs, whereas inhibition in hippocampus (HC) predominantly relies on GABA. Astrocytes heterogeneously express neurotransmitter transporters and are expected to adapt to the local requirements regarding neurotransmitter homeostasis.

View Article and Find Full Text PDF

Astrocytes form large gap junctional networks that contribute to ion and neurotransmitter homeostasis. Astrocytes concentrate in the lateral superior olive (LSO), a prominent auditory brainstem center. Compared to the LSO, astrocyte density is lower in the region dorsal to the LSO (dLSO) and in the internuclear space between the LSO, the superior paraolivary nucleus (SPN).

View Article and Find Full Text PDF