There are no therapeutic predictive biomarkers or representative preclinical models for high-grade gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN), a highly aggressive, fatal, and heterogeneous malignancy. We established patient-derived (PD) tumoroids from biobanked tissue samples of advanced high-grade GEP-NEN patients and applied this model for targeted rapid ex vivo pharmacotyping, next-generation sequencing, and perturbational profiling. We used tissue-matched PD tumoroids to profile individual patients, compared ex vivo drug response to patients' clinical response to chemotherapy, and investigated treatment-induced adaptive stress responses.
View Article and Find Full Text PDFPancreatic neuroendocrine neoplasms (PanNENs) are the second most common malignancy of the pancreas. Surgery remains the only curative treatment for localized disease. For patients with inoperable advanced or metastatic disease, few targeted therapies are available, but their efficacy is unpredictable and variable.
View Article and Find Full Text PDFAbdominal surgeries are lifesaving procedures but can be complicated by the formation of peritoneal adhesions, intra-abdominal scars that cause intestinal obstruction, pain, infertility, and significant health costs. Despite this burden, the mechanisms underlying adhesion formation remain unclear and no cure exists. Here, we show that contamination of gut microbes increases post-surgical adhesion formation.
View Article and Find Full Text PDFPancreatic neuroendocrine neoplasms are epigenetically driven tumors, but therapies against underlying epigenetic drivers are currently not available in the clinical practice. We aimed to investigate EZH2 (Enhancer of Zest homolog) expression in PanNEN and the impact of EZH2 inhibition in three different PanNEN preclinical models. EZH2 expression in PanNEN patient samples ( = 172) was assessed by immunohistochemistry and correlated with clinico-pathological data.
View Article and Find Full Text PDFMolecular mechanisms underlying the development and progression of pancreatic neuroendocrine tumors (PanNETs) are still insufficiently understood. Efficacy of currently approved PanNET therapies is limited. While novel treatment options are being developed, patient stratification permitting more personalized treatment selection in PanNET is yet not feasible since no predictive markers are established.
View Article and Find Full Text PDF