Publications by authors named "Simon Jaekel"

We have investigated the adsorption and self-metalation of free-base tetraphenyltransdibenzoporphyrin (2H-TPtdBP) on Cu(111) as a function of coverage and temperature using scanning tunneling microscopy, x-ray photoelectron spectroscopy, temperature programmed desorption, and density-functional theory calculations. At low coverages (<0.16 molecules nm), we observe isolated individual molecules with an inverted conformation and no self-metalation up to 363 K.

View Article and Find Full Text PDF

In the context of ionic liquid (IL)-assisted catalysis, we have investigated the adsorption and thermal evolution of the IL 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([CCIm][TfN]) on Pt(111) between 100 and 800 K by angle-resolved X-ray photoelectron spectroscopy and scanning tunneling microscopy. Defined amounts of IL in the coverage range of a complete first wetting layer were deposited at low temperature (100-200 K), and subsequently heated to 300 K, or directly at 300 K. At 100 K, the IL adsorbs as an intact disordered layer.

View Article and Find Full Text PDF

We have studied 22-oxahemiporphycene molecules by a combination of scanning tunneling microscopy at low temperatures and density functional theory calculations. In contrast to other molecular switches with typically two switching states, these molecules can in principle exist in three different tautomers, due to their asymmetry and three inequivalent binding positions of a hydrogen atom in their macrocycle. Different tautomers are identified from the typical appearance on the surface and tunneling electrons can be used to tautomerize single molecules in a controllable way with the highest rates if the STM tip is placed close to the hydrogen binding positions in the cavity.

View Article and Find Full Text PDF

We deposited defined amounts of [CCIm][TfN] on Au(111) at different temperatures and investigated the morphology and wetting behavior of the deposited films by atomic force microscopy. For multilayer coverages, we observe a drastically different growth behavior when comparing deposition at room temperature (RT) and deposition below 170 K followed by slow annealing to RT. Upon deposition at RT, we find the formation of 2-30 nm high and 50-500 nm wide metastable 3D droplets on top of a checkerboard-type wetting layer.

View Article and Find Full Text PDF

Prototypical molecular switches such as azobenzenes exhibit two states, i.e., trans and cis, with different characteristic physical properties.

View Article and Find Full Text PDF

This paper presents a novel method for preparing aromatic, mixed self-assembled monolayers (SAMs) with a dilute surface fraction coverage of protonated amine via in situ hydrolysis of C═N double bond on gold surface. Two imine compounds, (4'-(4-(trifluoromethyl)benzylideneamino)biphenyl-4-yl)methanethiol (CF(3)-C(6)H(4)-CH═N-C(6)H(4)-C(6)H(4)-CH(2)-SH, TFBABPMT) and (4'-(4-cyanobenzylideneamino)biphenyl-4-yl)methanethiol (CN-C(6)H(4)-CH═N-C(6)H(4)-C(6)H(4)-CH(2)-SH, CBABPMT), self-assembled on Au(111) to form highly ordered monolayers, which was demonstrated by infrared reflection absorption spectroscopy (IRRAS) and X-ray photoelectron spectroscopy (XPS). A nearly upright molecular orientation for CF(3)- and CN-terminated SAM was detected by near edge X-ray absorption fine structure (NEXAFS) measurements.

View Article and Find Full Text PDF