Germline defects affecting the DNA-binding domain of the transcription factor FLI1 are associated with a bleeding disorder that is characterized by the presence of large, fused α-granules in platelets. We investigated whether the genes showing abnormal expression in FLI1-deficient platelets could be involved in platelet α-granule biogenesis by undertaking transcriptome analysis of control platelets and platelets harboring a DNA-binding variant of FLI1. Our analysis identified 2,276 transcripts that were differentially expressed in FLI1-deficient platelets.
View Article and Find Full Text PDFCopy number variation (CNV) is known to cause all von Willebrand disease (VWD) types, although the associated pathogenic mechanisms involved have not been extensively studied. Notably, in-frame CNV provides a unique opportunity to investigate how specific von Willebrand factor (VWF) domains influence the processing and packaging of the protein. Using multiplex ligation-dependent probe amplification, this study determined the extent to which CNV contributed to VWD in the Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease cohort, highlighting in-frame deletions of exons 3, 4-5, 32-34, and 33-34.
View Article and Find Full Text PDFWith the advent of large-scale next-generation sequencing initiatives, there is an increasing importance to interpret and understand the potential phenotypic influence of identified genetic variation and its significance in the human genome. Bioinformatics analyses can provide useful information to assist with variant interpretation. This review provides an overview of tools/resources currently available, and how they can help predict the impact of genetic variation at the deoxyribonucleic acid, ribonucleic acid, and protein level.
View Article and Find Full Text PDF