Dis3L2 is a highly conserved 3'-5' exoribonuclease which is mutated in the human overgrowth disorders Perlman syndrome and Wilms' tumour of the kidney. Using Drosophila melanogaster as a model system, we have generated a new dis3L2 null mutant together with wild-type and nuclease-dead genetic lines in Drosophila to demonstrate that the catalytic activity of Dis3L2 is required to control cell proliferation. To understand the cellular pathways regulated by Dis3L2 to control proliferation, we used RNA-seq on dis3L2 mutant wing discs to show that the imaginal disc growth factor Idgf2 is responsible for driving the wing overgrowth.
View Article and Find Full Text PDFTwo novel ferrocene-containing compounds based upon a known MNK1/2 kinase (MAPK-interacting kinase) inhibitor have been synthesized. The compounds were designed to use the unique shape of ferrocene to exploit a large hydrophobic pocket in MNK1/2 that is only partially occupied by the original compound. Screening of the ferrocene analogues showed that both exhibited potent anticancer effects in several breast cancer and AML (acute myeloid leukemia) cell lines, despite a loss of MNK potency.
View Article and Find Full Text PDFThe study of eukaryotic initiation factor 4E (eIF4E) is a key focus in cancer research due to its role in controlling the translation of tumour-associated proteins, that drive an aggressive migratory phenotype. eIF4E is a limiting component of the eIF4F complex which is a critical determinant for the translation of mRNAs. Mitogen-activated protein kinase interacting protein kinases (MNK1/2) phosphorylate eIF4E on Ser209, promoting the expression of oncogenic proteins, whereas mTORC1 phosphorylates and de-activates the eIF4E inhibitor, 4E-BP1, to release translational repression.
View Article and Find Full Text PDFTargeting the translational machinery has emerged as a promising therapeutic option for cancer treatment. Cancer cells require elevated protein synthesis and exhibit augmented activity to meet the increased metabolic demand. Eukaryotic translation initiation factor 4E is necessary for mRNA translation, its availability and phosphorylation are regulated by the PI3K/AKT/mTOR and MNK1/2 pathways.
View Article and Find Full Text PDFDDX3X, a helicase, can interact directly with mRNA and translation initiation factors, regulating the selective translation of mRNAs that contain a structured 5' untranslated region. This activity modulates the expression of mRNAs controlling cell cycle progression and mRNAs regulating actin dynamics, contributing to cell adhesion and motility. Previously, we have shown that ribosomes and translation initiation factors localise to the leading edge of migrating fibroblasts in loci enriched with actively translating ribosomes, thereby promoting steady-state levels of ArpC2 and Rac1 proteins at the leading edge of cells during spreading.
View Article and Find Full Text PDFRegulation of protein synthesis is crucial for cells to maintain viability and to prevent unscheduled proliferation that could lead to tumorigenesis. Exposure to stress results in stalling of translation, with many translation initiation factors, ribosomal subunits and mRNAs being sequestered into stress granules or P bodies. This allows the re-programming of the translation machinery.
View Article and Find Full Text PDFProtein synthesis is a tightly controlled process responding to several stimuli, including viral infection. As obligate intracellular parasites, viruses depend on the translation machinery of the host and can manipulate it by affecting the availability and function of specific eukaryotic initiation factors (eIFs). Human norovirus is a member of the Caliciviridae family and is responsible for gastroenteritis outbreaks.
View Article and Find Full Text PDFMyogenic differentiation in the C2C12 myoblast model system reflects a concerted and controlled activation of transcription and translation following the exit of cells from the cell cycle. Previously we have shown that the mTORC1 signaling inhibitor, RAD001, decreased protein synthesis rates, delayed C2C12 myoblast differentiation, decreased p70S6K activity but did not affect the hypermodification of 4E-BP1. Here we have further investigated the modification of 4E-BP1 during the early phase of differentiation as cells exit the cell cycle, using inhibitors to target mTOR kinase and siRNAs to ablate the expression of raptor and rictor.
View Article and Find Full Text PDFTranslation (Austin)
September 2014
Regulation of protein synthesis is of fundamental importance to cells. It has a critical role in the control of gene expression, and consequently cell growth and proliferation. The importance of this control is supported by the fact that protein synthesis is frequently upregulated in tumor cells.
View Article and Find Full Text PDFBackground: Glioblastoma multiforme (GBM), the most common and most aggressive type of primary adult brain tumour, responds poorly to conventional treatment. Temozolomide (TMZ) chemotherapy remains the most commonly used treatment, despite a large proportion of tumours displaying TMZ resistance. 60% of GBM tumours have unmethylated MGMT promoter regions, resulting in an overexpression of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT), which is responsible for tumour resistance to TMZ chemotherapy.
View Article and Find Full Text PDFSUMO is a small post-translational modifier, that is attached to lysine residues in target proteins. It acts by altering protein-protein interactions, protein localisation and protein activity. SUMO chains can also act as substrates for ubiquitination, resulting in proteasome-mediated degradation of the target protein.
View Article and Find Full Text PDFTranslation mechanisms at different stages of the cell cycle have been studied for many years, resulting in the dogma that translation rates are slowed during mitosis, with cap-independent translation mechanisms favored to give expression of key regulatory proteins. However, such cell culture studies involve synchronization using harsh methods, which may in themselves stress cells and affect protein synthesis rates. One such commonly used chemical is the microtubule de-polymerization agent, nocodazole, which arrests cells in mitosis and has been used to demonstrate that translation rates are strongly reduced (down to 30% of that of asynchronous cells).
View Article and Find Full Text PDFThe protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions.
View Article and Find Full Text PDFDuring cell spreading, mammalian cells migrate using lamellipodia formed from a large dense branched actin network which produces the protrusive force required for leading edge advancement. The formation of lamellipodia is a dynamic process and is dependent on a variety of protein cofactors that mediate their local regulation, structural characteristics and dynamics. In the present study, we show that mRNAs encoding some structural and regulatory components of the WAVE [WASP (Wiskott-Aldrich syndrome protein) verprolin homologous] complex are localized to the leading edge of the cell and associated with sites of active translation.
View Article and Find Full Text PDFPlanarian flatworms are able to both regenerate their whole bodies and continuously adapt their size to nutrient status. Tight control of stem cell proliferation and differentiation during these processes is the key feature of planarian biology. Here we show that the planarian homolog of the phosphoinositide 3-kinase-related kinase (PIKK) family member SMG-1 and mTOR complex 1 components are required for this tight control.
View Article and Find Full Text PDFPersistent protein synthesis inhibition (PSI) is a robust predictor of eventual neuronal death following cerebral ischemia. We thus tested the hypothesis that persistent PSI inhibition and neuronal death are causally linked. Neuronal viability strongly correlated with both protein synthesis and levels of eukaryotic (translation) initiation factor 4G1 (eIF4G1).
View Article and Find Full Text PDFCell migration is a highly controlled essential cellular process, often dysregulated in tumour cells, dynamically controlled by the architecture of the cell. Studies involving cellular fractionation and microarray profiling have previously identified functionally distinct mRNA populations specific to cellular organelles and architectural compartments. However, the interaction between the translational machinery itself and cellular structures is relatively unexplored.
View Article and Find Full Text PDFWe have previously shown that the DNA damage-induced G2 arrest is contributed by inhibition of Aurora A (AurA) and that transduction of active AurA into arrested cells allows bypassing the block through reactivation of CDK1. In this study, we investigated the mechanism of DNA damage-induced AurA inhibition. We provide evidence that ionizing radiation (IR) administered in mitosis, a time when AurA protein and enzymatic activity reach peak levels, impairs interaction with the partner TPX2, leading to inactivation of the kinase through dephosphorylation of AurA T-loop residue, T288.
View Article and Find Full Text PDFIn recent years there have been major advances with respect to the identification of the protein components and mechanisms of microRNA (miRNA) mediated silencing. However, the complete and precise repertoire of components and mechanism(s) of action remain to be fully elucidated. Herein we reveal the identification of a family of three LIM domain-containing proteins, LIMD1, Ajuba and WTIP (Ajuba LIM proteins) as novel mammalian processing body (P-body) components, which highlight a novel mechanism of miRNA-mediated gene silencing.
View Article and Find Full Text PDFBackground Information: The spatial localization of translation can facilitate the enrichment of proteins at their sites of function while also ensuring that proteins are expressed in the proximity of their cognate binding partners.
Results: Using human embryonic lung fibroblasts and employing confocal imaging and biochemical fractionation techniques, we show that ribosomes, translation initiation factors and specific RNA-binding proteins localize to nascent focal complexes along the distal edge of migrating lamellipodia. 40S ribosomal subunits appear to associate preferentially with beta3 integrin in focal adhesions at the leading edges of spreading cells, with this association strongly augmented by a synergistic effect of cell engagement with a mixture of extracellular matrix proteins.
Here Budiman et al. (2009) demonstrate that the selective translation of selenocysteine-containing proteins can be regulated by the mutually exclusive binding of eIF4a3 and SECIS binding protein 2 (SBP2) to a cis-acting element in the 3' untranslated region (3'UTR) of the target mRNA.
View Article and Find Full Text PDFCurrent accepted models suggest that hypophosphorylated 4E-binding protein (4E-BP1) binds to initiation factor 4E (eIF4E) to inhibit cap-dependent translation, a process readily reversed by its phosphorylation following activation of mammalian target of rapamycin (mTORC1) signalling. Myogenic differentiation in the C2C12 myoblast model system reflects a concerted and controlled activation of transcription and translation following the exit of cells from the cell cycle. Here we show that myogenic differentiation is associated with increased rates of translation, the up-regulation of both 4E-BP1 mRNA and protein levels and enhanced levels of eIF4E/4E-BP1 complex.
View Article and Find Full Text PDFSemin Ultrasound CT MR
February 2009
Anatomy is the foundation on which the understanding of pathological processes in radiology is based. This article describes the anatomy of the sinonasal region and the clinically relevant anatomical variants, highlighting the need for multiplanar reconstructions as a routine part of the examination when reviewing this region.
View Article and Find Full Text PDF