Naturally occurring paramagnetic species (PS), such as free radicals and paramagnetic metalloproteins, play an essential role in a multitude of critical physiological processes including metabolism, cell signaling, and immune response. These highly dynamic species can also act as intrinsic biomarkers for a variety of disease states, while synthetic paramagnetic probes targeted to specific sites on biomolecules enable the study of functional information such as tissue oxygenation and redox status in living systems. The work presented herein describes a new sensing method that exploits the spin-dependent emission of photoluminescence (PL) from an ensemble of nitrogen-vacancy centers in diamond for rapid, nondestructive detection of PS in living systems.
View Article and Find Full Text PDFFluorescent nanodiamonds (fNDs) containing nitrogen vacancy (NV) centers are promising candidates for quantum sensing in biological environments. This work describes the fabrication and implementation of electrospun poly lactic-co-glycolic acid (PLGA) nanofibers embedded with fNDs for optical quantum sensing in an environment, which recapitulates the nanoscale architecture and topography of the cell niche. A protocol that produces uniformly dispersed fNDs within electrospun nanofibers is demonstrated and the resulting fibers are characterized using fluorescent microscopy and scanning electron microscopy (SEM).
View Article and Find Full Text PDF