Publications by authors named "Simon J Herr"

Tunable light sources are a key enabling technology for many applications such as ranging, spectroscopy, optical coherence tomography, digital imaging and interferometry. For miniaturized laser devices, whispering gallery resonator lasers are a well-suited platform, offering low thresholds and small linewidths, however, many realizations suffer from the lack of reliable tuning. Rare-earth ion-doped lithium niobate offers a way to solve this issue.

View Article and Find Full Text PDF

Nonlinear interferometers allow for mid-infrared spectroscopy with near-infrared detection using correlated photons. Previous implementations have demonstrated a spectral resolution limited by spectrally selective detection. In our work, we demonstrate mid-infrared transmission spectroscopy in a nonlinear interferometer using single-pixel near-infrared detection and Fourier-transform analysis.

View Article and Find Full Text PDF

Whispering-gallery-mode resonators made of laser-active materials can serve as efficient microphotonic coherent light sources. However, the majority of experimental realizations relies on expensive pump light sources like narrow-linewidth or pulsed laser systems, which is inappropriate for most applications. In order to overcome this, we present a whispering-gallery laser system without the need for an expensive pump light source and at the same time with unprecedented laser performance: A laser-active resonator made of Nd:YVO  is non-resonantly excited, employing a low-cost laser diode without any external frequency stabilization, emitting up to 100 mW optical power around 810 nm wavelength.

View Article and Find Full Text PDF

Optical frequency combs are key to optical precision measurements. While most frequency combs operate in the near-infrared (NIR) regime, many applications require combs at mid-infrared (MIR), visible (VIS), or even ultra-violet (UV) wavelengths. Frequency combs can be transferred to other wavelengths via nonlinear optical processes; however, this becomes exceedingly challenging for high-repetition-rate frequency combs.

View Article and Find Full Text PDF

Lasing and self-pumped optical parametric oscillation (self-OPO) are achieved in a high-Q whispering-gallery-mode micro-resonator, made of neodymium-doped lithium niobate. A laser process providing 5 mW output power at 1.08 μm wavelength is sufficient to pump a self-OPO process within the same high-Q cavity.

View Article and Find Full Text PDF

Lasing and self-frequency doubling are achieved in a millimeter-sized laser-active whispering-gallery resonator made of neodymium-doped lithium niobate. A low-cost 808-nm laser diode without external frequency stabilization is sufficient to pump the neodymium ions. Laser oscillation around 1.

View Article and Find Full Text PDF

Ferroelectric domain walls are interfaces between areas of a material that exhibits different directions of spontaneous polarization. The properties of domain walls can be very different from those of the undisturbed material. Metallic-like conductivity of charged domain walls (CDWs) in nominally insulating ferroelectrics was predicted in 1973 and detected recently.

View Article and Find Full Text PDF

Despite the need for isotropic optical resolution in a growing number of applications, the majority of super-resolution fluorescence microscopy setups still do not attain an axial resolution comparable to that in the lateral dimensions. Three-dimensional (3D) nanoscopy implementations that employ only a single objective lens typically feature a trade-off between axial and lateral resolution. 4Pi arrangements, in which the sample is illuminated coherently through two opposing lenses, have proven their potential for rendering the resolution isotropic.

View Article and Find Full Text PDF