Publications by authors named "Simon J Atkinson"

Hypothesis: In this communication, we test the hypothesis that sulfotransferase 1C2 (SULT1C2, UniProt accession no. Q9WUW8) can modulate mitochondrial respiration by increasing state-III respiration.

Methods And Results: Using freshly isolated mitochondria, the addition of SULT1C2 and 3-phosphoadenosine 5 phosphosulfate (PAPS) results in an increased maximal respiratory capacity in response to the addition of succinate, ADP, and rotenone.

View Article and Find Full Text PDF

Regulation of the peripheral vascular resistance via modulating the vessel diameter has been considered as a main determinant of the arterial blood pressure. Phosphodiesterase enzymes (PDE1-11) hydrolyse cyclic nucleotides, which are key players controlling the vessel diameter and, thus, peripheral resistance. Here, we have tested and reported the effects of a novel selective PDE1 inhibitor (BTTQ) on the cardiovascular system.

View Article and Find Full Text PDF

Acute kidney injury comprises a heterogeneous group of conditions characterized by a sudden decrease in renal function over hours to days. Contrast-induced acute kidney injury (CI-AKI) is caused by radiographic contrast agents used in diagnostic imaging. In the current issue of the JCI, Lau et al.

View Article and Find Full Text PDF

Ischemic preconditioning confers organ-wide protection against subsequent ischemic stress. A substantial body of evidence underscores the importance of mitochondria adaptation as a critical component of cell protection from ischemia. To identify changes in mitochondria protein expression in response to ischemic preconditioning, we isolated mitochondria from ischemic preconditioned kidneys and sham-treated kidneys as a basis for comparison.

View Article and Find Full Text PDF

Highly aerobic organs like the kidney are innately susceptible to ischemia-reperfusion (I/R) injury, which can originate from sources including myocardial infarction, renal trauma, and transplant. Therapy is mainly supportive and depends on the cause(s) of damage. In the absence of hypervolemia, intravenous fluid delivery is frequently the first course of treatment but does not reverse established AKI.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a common cause of hospital-related mortality; therefore, strategies to either prevent or treat this complication are of great interest. In this issue of the JCI, Inoue, Abe, and colleagues have uncovered a targetable neuroimmunomodulatory mechanism that protects mice from ischemia-reperfusion injury (IRI) and subsequent AKI. Specifically, the authors demonstrate that vagus nerve stimulation (VNS) activates the cholinergic antiinflammatory pathway (CAP), resulting in activation of antiinflammatory effects via α7 nicotinic acetylcholine receptor-expressing splenic macrophages.

View Article and Find Full Text PDF

Gene therapy has been proposed as a novel alternative to treat kidney disease. This goal has been hindered by the inability to reliably deliver transgenes to target cells throughout the kidney, while minimizing injury. Since hydrodynamic forces have previously shown promising results, we optimized this approach and designed a method that utilizes retrograde renal vein injections to facilitate transgene expression in rat kidneys.

View Article and Find Full Text PDF

Dishevelled-associated activator of morphogenesis 1 (Daam1), a member of the formin protein family, plays an important role in regulating the actin cytoskeleton via mediation of linear actin assembly. Previous functional studies of Daam1 in lower species suggest its essential role in Drosophila trachea formation and Xenopus gastrulation. However, its in vivo physiological function in mammalian systems is largely unknown.

View Article and Find Full Text PDF

RhoA/Rho kinases (ROCK) play a critical role in vascular smooth muscle cell (VSMC) actin cytoskeleton organization, differentiation, and function and are implicated in the pathogenesis of cardiovascular disease. We have previously determined that an important step in the regulation of calcification is fetuin-A endocytosis, a process that is dependent on changes in the cytoskeleton, which, in turn, is known to be affected by the RhoA/ROCK signaling pathway. In the present study, bovine VSMC (BVSMC) were treated with the ROCK inhibitor Y-27632 or transfected with ROCK small interfering (si) RNA to knock down ROCK expression.

View Article and Find Full Text PDF

Proximal tubule cells (PTCs), which are the primary site of kidney injury associated with ischemia or nephrotoxicity, are the site of oligonucleotide reabsorption within the kidney. We exploited this property to test the efficacy of siRNA targeted to p53, a pivotal protein in the apoptotic pathway, to prevent kidney injury. Naked synthetic siRNA to p53 injected intravenously 4 h after ischemic injury maximally protected both PTCs and kidney function.

View Article and Find Full Text PDF

Acute ischemic kidney injury results in marked increases in local and systemic cytokine levels. IL-1alpha, IL-6, and TNF-alpha orchestrate various inflammatory reactions influencing endothelial permeability by altering cell-to-cell and cell-to-extracellular matrix attachments. To explore the role of actin and the regulatory proteins RhoA and cofilin in this process, microvascular endothelial cells (MS1) were exposed to individual cytokines or a cytokine cocktail.

View Article and Find Full Text PDF

Mast cells are key participants in allergic diseases via activation of high-affinity IgE receptors (FcepsilonRI) resulting in release of proinflammatory mediators. The biochemical pathways linking IgE activation to calcium influx and cytoskeletal changes required for intracellular granule release are incompletely understood. We demonstrate, genetically, that Pak1 is required for this process.

View Article and Find Full Text PDF

The phagocyte NADPH oxidase generates superoxide for microbial killing, and includes a membrane-bound flavocytochrome b(558) and cytosolic p67(phox), p47(phox), and p40(phox) subunits that undergo membrane translocation upon cellular activation. The function of p40(phox), which binds p67(phox) in resting cells, is incompletely understood. Recent studies showed that phagocytosis-induced superoxide production is stimulated by p40(phox) and its binding to phosphatidylinositol-3-phosphate (PI3P), a phosphoinositide enriched in membranes of internalized phagosomes.

View Article and Find Full Text PDF

Migration of hemopoietic stem and progenitor cells (HSPC) is required for homing to bone marrow following transplantation. Therefore, it is critical to understand signals underlying directional movement of HSPC. Stromal cell-derived factor-1 (SDF-1)/CXCL12 is a potent chemoattractant for HSPC.

View Article and Find Full Text PDF

Renal ischemia and in vitro ATP depletion result in disruption of the epithelial tight junction barrier, which is accompanied by breakdown of plasma membrane polarity. Tight junction formation is regulated by evolutionarily conserved complexes, including that of atypical protein kinase C (aPKC), Par3, and Par6. The aPKC signaling complex is activated by Rac and regulated by protein phosphorylation and associations with other tight junction regulatory proteins, for example, mLgl.

View Article and Find Full Text PDF

An important emerging paradigm in the understanding of renal disease is the recognition of the central role of inflammation in the initiation and progression of acute and chronic kidney injury. These advances have led to an increasing awareness of the importance of leukocytes (white blood cells (WBC)) in the pathogenesis of renal disease, and the necessity for a greater understanding of the specific roles of different WBC lineages. All aspects of WBC function have been implicated in aspects of renal disease.

View Article and Find Full Text PDF

Background: Nephrotic syndrome is a common kidney disease in both children and adults that is characterized by dramatic structural changes in the actin-rich foot processes of glomerular podocytes. Although glucocorticoids are the primary treatment for nephrotic syndrome, neither the target cell nor mechanism of action of glucocorticoids in nephrotic syndrome is known. For the last 30 years glucocorticoids have been presumed to act by reducing the release of soluble mediators of disease by circulating lymphocytes.

View Article and Find Full Text PDF

The Rho family GTPase Rac is a crucial participant in numerous cellular functions and acts as a molecular switch for signal transduction. Mice deficient in hemopoietic-specific Rac2 exhibited agonist-specific defects in neutrophil functions including chemoattractant-stimulated filamentous actin polymerization and chemotaxis, and superoxide production elicited by phorbol ester, fMLP, or IgG-coated particles, despite expression of the highly homologous Rac1 isoform. In this study, functional responses of Rac2-null murine macrophages were characterized to examine whether Rac2 also has nonredundant functions in this phagocytic lineage.

View Article and Find Full Text PDF

The Rho family GTPase Rac acts as a molecular switch for signal transduction to regulate various cellular functions. Mice deficient in the hematopoietic-specific Rac2 isoform exhibit agonist-specific defects in neutrophil chemotaxis and superoxide production, despite expression of the highly homologous Rac1 isoform. To examine whether functional defects in rac2(-/-) neutrophils reflect effects of an overall decrease in total cellular Rac or an isoform-specific role for Rac2, retroviral vectors were used to express exogenous Rac1 or Rac2 at levels similar to endogenous.

View Article and Find Full Text PDF

The NF1 tumor suppressor gene encodes a GTPase-activating protein called neurofibromin that negatively regulates Ras signaling. Mutations in NF1 cause neurofibromatosis type 1 (NF1). The development of neurofibromas, which are complex tumors composed of multiple cell types, is a hallmark of NF1.

View Article and Find Full Text PDF

Cellular ATP depletion in diverse cell types results in the net conversion of monomeric G-actin to polymeric F-actin and is an important aspect of cellular injury in tissue ischemia. We propose that this conversion results from altering the ratio of ATP-G-actin and ADP-G-actin, causing a net decrease in the concentration of thymosinactin complexes as a consequence of the differential affinity of thymosin beta4 for ATP- and ADP-G-actin. To test this hypothesis we examined the effect of ATP depletion induced by antimycin A and substrate depletion on actin polymerization, the nucleotide state of the monomer pool, and the association of actin monomers with thymosin and profilin in the kidney epithelial cell line LLC-PK1.

View Article and Find Full Text PDF

The Rho guanosine triphosphatases (GTPases) Rac1 and Rac2 are critical signaling regulators in mammalian cells. The deletion of both Rac1 and Rac2 murine alleles leads to a massive egress of hematopoietic stem/progenitor cells (HSC/Ps) into the blood from the marrow, whereas Rac1-/- but not Rac2-/- HSC/Ps fail to engraft in the bone marrow of irradiated recipient mice. In contrast, Rac2, but not Rac1, regulates superoxide production and directed migration in neutrophils, and in each cell type, the two GTPases play distinct roles in actin organization, cell survival, and proliferation.

View Article and Find Full Text PDF

Several signaling pathways that regulate tight junction and adherens junction assembly are being characterized. Calpeptin activates stress fiber assembly in fibroblasts by inhibiting SH2-containing phosphatase-2 (SHP-2), thereby activating Rho-GTPase signaling. Here, we have examined the effects of calpeptin on stress fiber and junctional complex assembly in Madin-Darby canine kidney (MDCK) and LLC-PK epithelial cells.

View Article and Find Full Text PDF

Rho GTPases are critical for actin cytoskeletal regulation, and alterations in their activity may contribute to altered cytoskeletal organization that characterizes many pathological conditions, including ischemia. G protein activity is a function of the ratio of GTP-bound (active) to GDP-bound (inactive) protein, but the effect of altered energy metabolism on Rho protein activity has not been determined. We used antimycin A and substrate depletion to induce depletion of intracellular ATP and GTP in the kidney proximal tubule cell line LLC-PK10 and measured the activity of RhoA, Rac1, and Cdc42 with GTPase effector binding domains fused to glutathione S-transferase.

View Article and Find Full Text PDF

Rac GTPases regulate a wide variety of cellular processes including actin cytoskeleton organization, gene expression, cell-cycle progression, and apoptosis. Here we report that the TRQQKRP motif of Rac2 located near the C-terminus, a region of sequence disparity among Rac proteins, is essential for complementation of Rac2 function in Rac2-deficient cells. Deletion of this sequence can also intragenically suppress the dominant-negative Rac2(D57N) mutation in a variety of functional assays.

View Article and Find Full Text PDF