Detecting the presence of prostate cancer (PCa) and distinguishing low- or intermediate-risk disease from high-risk disease early, and without the need for potentially unnecessary invasive biopsies remains a significant clinical challenge. The aim of this study is to determine whether the T and B cell phenotypic features which we have previously identified as being able to distinguish between benign prostate disease and PCa in asymptomatic men having Prostate-Specific Antigen (PSA) levels < 20 ng/ml can also be used to detect the presence and clinical risk of PCa in a larger cohort of patients whose PSA levels ranged between 3 and 2617 ng/ml. The peripheral blood of 130 asymptomatic men having elevated Prostate-Specific Antigen (PSA) levels was immune profiled using multiparametric whole blood flow cytometry.
View Article and Find Full Text PDFWe demonstrate that prostate cancer can be identified by flow cytometric profiling of blood immune cell subsets. Herein, we profiled natural killer (NK) cell subsets in the blood of 72 asymptomatic men with Prostate-Specific Antigen (PSA) levels < 20 ng ml, of whom 31 had benign disease (no cancer) and 41 had prostate cancer. Statistical and computational methods identified a panel of eight phenotypic features ([Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]) that, when incorporated into an Ensemble machine learning prediction model, distinguished between the presence of benign prostate disease and prostate cancer.
View Article and Find Full Text PDFGB virus B (GBV-B) is a new world monkey-associated flavivirus used to model acute hepatitis C virus (HCV) infection. Critical for evaluation of antiviral or vaccine approaches is an understanding of the effect of HCV on the liver at different stages of infection. In the absence of longitudinal human tissue samples at defined time points, we have characterized changes in tamarins.
View Article and Find Full Text PDFAn emerging cellular immunotherapy for cancer is based on the cytolytic activity of natural killer (NK) cells against a wide range of tumors. Although in vitro activation, or "priming," of NK cells by exposure to pro-inflammatory cytokines, such as interleukin (IL)-2, has been extensively studied, the biological consequences of NK cell activation in response to target cell interactions have not been thoroughly characterized. We investigated the consequences of co-incubation with K562, CTV-1, Daudi RPMI-8226, and MCF-7 tumor cell lines on the phenotype, cytokine expression profile, and transcriptome of human NK cells.
View Article and Find Full Text PDFAlthough immunotherapy has emerged as the "next generation" of cancer treatments, it has not yet been shown to be successful in the treatment of patients with prostate cancer, for whom therapeutic options remain limited to radiotherapy and androgen (hormone) deprivation therapy. Previous studies have shown that priming natural killer (NK) cells isolated from healthy individuals via co-incubation with CTV-1 cells derived from an acute lymphoblastic leukemia (ALL) enhances their cytotoxicity against human DU145 (metastatic) prostate cancer cells, but it remains unknown to what extent NK cells from patients with prostate cancer can be triggered to kill. Herein, we explore the phenotype of peripheral blood NK cells in patients with prostate cancer and compare the capacity of CTV-1 cell-mediated priming and IL-2 stimulation to trigger NK cell-mediated killing of the human PC3 (metastatic) prostate cancer cell line.
View Article and Find Full Text PDFFront Immunol
September 2019
Interactions between the immune system and tumors are highly reciprocal in nature, leading to speculation that tumor recurrence or therapeutic resistance could be influenced or predicted by immune events that manifest locally, but can be detected systemically. Multi-parameter flow cytometry was used to examine the percentage and phenotype of natural killer (NK) cells, myeloid-derived suppressor cells (MDSCs), monocyte subsets and regulatory T (Treg) cells in the peripheral blood of of 85 patients with breast cancer (50 of whom were assessed before and after one cycle of anthracycline-based chemotherapy), and 23 controls. Transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) in 23 patients were generated using a NanoString gene profiling platform.
View Article and Find Full Text PDFDetermining whether an asymptomatic individual with Prostate-Specific Antigen (PSA) levels below 20 ng ml has prostate cancer in the absence of definitive, biopsy-based evidence continues to present a significant challenge to clinicians who must decide whether such individuals with low PSA values have prostate cancer. Herein, we present an advanced computational data extraction approach which can identify the presence of prostate cancer in men with PSA levels <20 ng ml on the basis of peripheral blood immune cell profiles that have been generated using multi-parameter flow cytometry. Statistical analysis of immune phenotyping datasets relating to the presence and prevalence of key leukocyte populations in the peripheral blood, as generated from individuals undergoing routine tests for prostate cancer (including tissue biopsy) using multi-parametric flow cytometric analysis, was unable to identify significant relationships between leukocyte population profiles and the presence of benign disease (no prostate cancer) or prostate cancer.
View Article and Find Full Text PDFMicrosatellites are useful tools for ecologists and conservationist biologists, but are taxa-specific and traditionally expensive and time-consuming to develop. New methods using next-generation sequencing (NGS) have reduced these problems, but the plethora of software available for processing NGS data may cause confusion and difficulty for researchers new to the field of bioinformatics. We developed a bioinformatics pipeline for microsatellite development from Illumina paired-end sequences, which is packaged in the open-source bioinformatics tool Galaxy.
View Article and Find Full Text PDFFlaviviruses related to hepatitis C virus (HCV) in suitable animal models may provide further insight into the role that cellular immunity contributes to spontaneous clearance of HCV. We characterised changes in lymphocyte populations in tamarins with an acute GBV-B infection, a hepatitis virus of the flaviviridae. Major immune cell populations were monitored in peripheral and intra-hepatic lymphocytes at high viraemia or following a period when peripheral virus was no longer detected.
View Article and Find Full Text PDFBackground: Foamy viruses are non-pathogenic in vivo and naturally infect all species of non-human primates (NHP). Simian foamy viruses (SFV) are highly prevalent in both free ranging and captive NHP but few longitudinal studies have been performed to assess the prevalence and biodistribution of SFV within captive NHP.
Method: LTR and pol gene along with Gag antibody detection were undertaken to identify infection in a cohort of over 80 captive macaques.
The infection dynamics and pathology of a retrovirus may be altered by one or more additional viruses. To investigate this further, this study characterized proviral load, biodistribution and the immune response in Macaca fascicularis naturally infected with combinations of simian retrovirus type 2 (SRV-2) and simian T-cell lymphotropic virus type I (STLV-I). As the mesenteric lymph node (MLN) and the spleen have been implicated previously in response to retroviral infection, the morphology and immunopathology of these tissues were assessed.
View Article and Find Full Text PDF