The combination of optical tweezer arrays with strong interactions-via dipole exchange of molecules and Van der Waals interactions of Rydberg atoms-has opened the door for the exploration of a wide variety of quantum spin models. A next significant step will be the combination of such settings with mobile dopants. This will enable one to simulate the physics believed to underlie many strongly correlated quantum materials.
View Article and Find Full Text PDFControlling molecular binding at the level of single atoms is one of the holy grails of quantum chemistry. Rydberg macrodimers─bound states between highly excited Rydberg atoms─provide a novel perspective in this direction. Resulting from binding potentials formed by the strong, long-range interactions of Rydberg states, Rydberg macrodimers feature bond lengths in the micrometer regime, exceeding those of conventional molecules by orders of magnitude.
View Article and Find Full Text PDFThe Kardar-Parisi-Zhang (KPZ) universality class describes the coarse-grained behavior of a wealth of classical stochastic models. Surprisingly, KPZ universality was recently conjectured to also describe spin transport in the one-dimensional quantum Heisenberg model. We tested this conjecture by experimentally probing transport in a cold-atom quantum simulator via the relaxation of domain walls in spin chains of up to 50 spins.
View Article and Find Full Text PDFMeasurement-based quantum computing relies on the rapid creation of large-scale entanglement in a register of stable qubits. Atomic arrays are well suited to store quantum information, and entanglement can be created using highly-excited Rydberg states. Typically, isolating pairs during gate operation is difficult because Rydberg interactions feature long tails at large distances.
View Article and Find Full Text PDFVersatile interfaces with strong and tunable light-matter interactions are essential for quantum science because they enable mapping of quantum properties between light and matter. Recent studies have proposed a method of controlling light-matter interactions using the rich interplay of photon-mediated dipole-dipole interactions in structured subwavelength arrays of quantum emitters. However, a key aspect of this approach-the cooperative enhancement of the light-matter coupling strength and the directional mirror reflection of the incoming light using an array of quantum emitters-has not yet been experimentally demonstrated.
View Article and Find Full Text PDFThe subnanoscale size of typical diatomic molecules hinders direct optical access to their constituents. Rydberg macrodimers-bound states of two highly excited Rydberg atoms-feature interatomic distances easily exceeding optical wavelengths. We report the direct microscopic observation and detailed characterization of such molecules in a gas of ultracold rubidium atoms in an optical lattice.
View Article and Find Full Text PDF