We experimentally explore pressure-driven flow of water and n-hexane across nanoporous silica (Vycor glass monoliths with 7- or 10-nm pore diameters, respectively) as a function of temperature and surface functionalization (native and silanized glass surfaces). Hydraulic flow rates are measured by applying hydrostatic pressures via inert gases (argon and helium, pressurized up to 70 bar) on the upstream side in a capacitor-based membrane permeability setup. For the native, hydrophilic silica walls, the measured hydraulic permeabilities can be quantitatively accounted for by bulk fluidity provided we assume a sticking boundary layer, i.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2012
During spontaneous imbibition, a wetting liquid is drawn into a porous medium by capillary forces. In systems with comparable pore length and diameter, such as paper and sand, the front of the propagating liquid forms a continuous interface. Sections of this interface advance in a highly correlated manner due to an effective surface tension, which restricts front broadening.
View Article and Find Full Text PDFJ Phys Condens Matter
May 2011
We present, along with some fundamental concepts regarding imbibition of liquids in porous hosts, an experimental, gravimetric study on the capillarity-driven invasion dynamics of water and of the rod-like liquid crystal octyloxycyanobiphenyl (8OCB) in networks of pores a few nanometers across in monolithic silica glass (Vycor). We observe, in agreement with theoretical predictions, square root of time invasion dynamics and a sticky velocity boundary condition for both liquids investigated. Temperature-dependent spontaneous imbibition experiments on 8OCB reveal the existence of a paranematic phase due to the molecular alignment induced by the pore walls even at temperatures well beyond the clearing point.
View Article and Find Full Text PDFCapillary filling dynamics of liquid n-tetracosane (n-C24H50) in a network of cylindrical pores with 7 and 10 nm mean diameter in monolithic silica glass (Vycor) exhibit an abrupt temperature-slope change at Ts = 54 degrees C, approximately 4 degrees C above bulk and approximately 16 degrees C, 8 degrees C, respectively, above pore freezing. It can be traced to a sudden inversion of the surface tension's T slope, and thus to a decrease in surface entropy at the advancing pore menisci, characteristic of the formation of a single solid monolayer of rectified molecules, known as surface freezing from macroscopic, quiescent tetracosane melts. The imbibition speeds, that are the squared prefactors of the observed square-root-of-time Lucas-Washburn invasion kinetics, indicate a conserved bulk fluidity and capillarity of the nanopore-confined liquid, if we assume a flat lying, sticky hydrocarbon backbone monolayer at the silica walls.
View Article and Find Full Text PDFWe report on the capillary rise of water in three-dimensional networks of hydrophilic silica pores with 3.5 nm and 5 nm mean radii, respectively (porous Vycor monoliths). We find classical square root of time Lucas-Washburn laws for the imbibition dynamics over the entire capillary rise times of up to 16 h investigated.
View Article and Find Full Text PDFMeasurements on helium and argon gas flow through an array of parallel, linear channels of 12 nm diameter and 200 microm length in a single crystalline silicon membrane reveal a Knudsen diffusion type transport from 10(2) to 10(7) in Knudsen number Kn. The classic scaling prediction for the transport diffusion coefficient on temperature and mass of diffusing species, D(He) is proportional to square root T, is confirmed over a T range from 40 K to 300 K for He and for the ratio of D(He)/D(Ar) is proportional to square root (m(Ar)/m(He)). Deviations of the channels from a cylindrical form, resolved with electron microscopy down to subnanometer scales, quantitatively account for a reduced diffusivity as compared to Knudsen diffusion in ideal tubular channels.
View Article and Find Full Text PDF