Fulvestrant is an FDA-approved drug with a dual mechanism of action (MOA), acting as a full antagonist and degrader of the estrogen receptor protein. A significant limitation of fulvestrant is the dosing regimen required for efficacy. Due to its high lipophilicity and poor pharmacokinetic profile, fulvestrant needs to be administered through intramuscular injections which leads to injection site soreness.
View Article and Find Full Text PDFBreast cancer remains a leading cause of cancer death in women, representing a significant unmet medical need. Here, we disclose our discovery efforts culminating in a clinical candidate, (GDC-9545 or giredestrant). is an efficient and potent selective estrogen receptor degrader (SERD) and a full antagonist, which translates into better antiproliferation activity than known SERDs (, , , and ) across multiple cell lines.
View Article and Find Full Text PDFEstrogen receptor alpha (ERα) is a well-validated drug target for ER-positive (ER+) breast cancer. Fulvestrant is FDA-approved to treat ER+ breast cancer and works through two mechanisms-as a full antagonist and selective estrogen receptor degrader (SERD)-but lacks oral bioavailability. Thus, we envisioned a "best-in-class" molecule with the same dual mechanisms as fulvestrant, but with significant oral exposure.
View Article and Find Full Text PDFPhenolic groups are responsible for the high clearance and low oral bioavailability of the estrogen receptor alpha (ERα) clinical candidate GDC-0927. An exhaustive search for a backup molecule with improved pharmacokinetic (PK) properties identified several metabolically stable analogs, although in general at the expense of the desired potency and degradation efficiency. C-8 hydroxychromene 30 is the first example of a phenol-containing chromene that not only maintained excellent potency but also exhibited 10-fold higher oral exposure in rats.
View Article and Find Full Text PDFDisruption of interleukin-13 (IL-13) signaling with large molecule antibody therapies has shown promise in diseases of allergic inflammation. Given that IL-13 recruits several members of the Janus Kinase family (JAK1, JAK2, and TYK2) to its receptor complex, JAK inhibition may offer an alternate small molecule approach to disrupting IL-13 signaling. Herein we demonstrate that JAK1 is likely the isoform most important to IL-13 signaling.
View Article and Find Full Text PDFPreclinical and clinical evidence indicates that a subset of asthma is driven by type 2 cytokines such as interleukin-4 (IL-4), IL-5, IL-9, and IL-13. Additional evidence predicts pathogenic roles for IL-6 and type I and type II interferons. Because each of these cytokines depends on Janus kinase 1 (JAK1) for signal transduction, and because many of the asthma-related effects of these cytokines manifest in the lung, we hypothesized that lung-restricted JAK1 inhibition may confer therapeutic benefit.
View Article and Find Full Text PDFHerein we report identification of an imidazopyridine class of potent and selective TYK2 inhibitors, exemplified by prototype 6, through constraint of the rotatable amide bond connecting the pyridine and aryl rings of compound 1. Further optimization led to generation of compound 30 that potently inhibits the TYK2 enzyme and the IL-23 pathway in cells, exhibits selectivity against cellular JAK2 activity, and has good pharmacokinetic properties. In mice, compound 30 demonstrated dose-dependent reduction of IL-17 production in a PK/PD model as well as in an imiquimod-induced psoriasis model.
View Article and Find Full Text PDFCheckpoint kinase 1 (ChK1) plays a key role in the DNA damage response, facilitating cell-cycle arrest to provide sufficient time for lesion repair. This leads to the hypothesis that inhibition of ChK1 might enhance the effectiveness of DNA-damaging therapies in the treatment of cancer. Lead compound 1 (GNE-783), the prototype of the 1,7-diazacarbazole class of ChK1 inhibitors, was found to be a highly potent inhibitor of acetylcholine esterase (AChE) and unsuitable for development.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2014
Checkpoint kinase 1 (ChK1) is activated in response to DNA damage, acting to temporarily block cell cycle progression and allow for DNA repair. It is envisaged that inhibition of ChK1 will sensitize tumor cells to treatment with DNA-damaging therapies, and may enhance the therapeutic window. High throughput screening identified carboxylate-containing diarylpyrazines as a prominent hit series, but with limited biochemical potency and no cellular activity.
View Article and Find Full Text PDFAmalgamation of the structure-activity relationship of two series of GlyT1 inhibitors developed at Merck led to the discovery of a clinical candidate, compound 16 (DCCCyB), which demonstrated excellent in vivo occupancy of GlyT1 transporters in rhesus monkey as determined by displacement of a PET tracer ligand.
View Article and Find Full Text PDFA series of heterocyclic sulfonamides have been developed which are potent and selective inhibitors of hGlyT1. SAR studies to optimise the in vitro and in vivo properties are described. Optimisation of the central scaffold resulted in cyclohexane sulfones 28 and 29, which have good PK properties and show promise for further development.
View Article and Find Full Text PDFNon-selective benzodiazepines, such as diazepam, interact with equivalent affinity and agonist efficacy at GABA(A) receptors containing either an alpha1, alpha2, alpha3 or alpha5 subunit. However, which of these particular subtypes are responsible for the anticonvulsant effects of diazepam remains uncertain. In the present study, we examined the ability of diazepam to reduce pentylenetetrazoLe (PTZ)-induced and maximal electroshock (MES)-induced seizures in mice containing point mutations in single (alpha1H101R, alpha2H101R or alpha5H105R) or multiple (alpha125H-->R) alpha subunits that render the resulting GABA(A) receptors diazepam-insensitive.
View Article and Find Full Text PDFThe identification of a series of imidazo[1,2-b][1,2,4]triazines with high affinity and functional selectivity for the GABA(A) alpha3-containing receptor subtype is described, leading to the identification of a clinical candidate, 11. Compound 11 shows good bioavailability and half-life in preclinical species, and it is a nonsedating anxiolytic in both rat and squirrel monkey behavioral models.
View Article and Find Full Text PDFThe cyclopyrrolone pagoclone binds with roughly equivalent high affinity (0.7-9.1nM) to the benzodiazepine binding site of human recombinant GABA(A) receptors containing either an alpha1, alpha2, alpha3 or alpha5 subunit.
View Article and Find Full Text PDFBioorg Med Chem Lett
March 2006
Imidazo[1,2-a]pyrimidines are GABA(A) receptor benzodiazepine binding site ligands which can exhibit functional selectivity for the alpha(3) subtype over the alpha(1) subtype. SAR studies to optimize this functional selectivity are described.
View Article and Find Full Text PDFA series of high-affinity GABA(A) agonists with good oral bioavailability in rat and dog and functional selectivity for the GABA(A)alpha2 and -alpha3 subtypes is reported. The 7-trifluoromethylimidazopyrimidine 14g and the 7-propan-2-olimidazopyrimidine 14k are anxiolytic in both conditioned and unconditioned animal models of anxiety with minimal sedation observed at full BZ binding site occupancy.
View Article and Find Full Text PDF8-Fluoroimidazo[1,2-a]pyridine has been established as a physicochemical mimic of imidazo[1,2-a]pyrimidine, using both in silico and traditional techniques. Furthermore, a novel synthesis of a 3,7-disubstituted-8-fluoroimidazopyridine 3 has been developed and the utility of the physicochemical mimicry has been demonstrated in an in vitro system. Here, the 8-fluoroimidazopyridine ring contained in ligand 3 acts as a bioisosteric replacement for imidazopyrimidine in the GABA(A) receptor modulator 2.
View Article and Find Full Text PDFImidazo[1,2-a]pyrazin-8-ones, imidazo[1,2-d][1,2,4]triazin-8-ones and imidazo[2,1-f][1,2,4]triazin-8-ones are high affinity GABA(A) agonists. Compound 16d has good oral bioavailability in rat, functional selectivity for the GABA(A)alpha2 and alpha3-subtypes and is anxiolytic in a conditioned animal model of anxiety with minimal sedation observed at full BZ binding site occupancy.
View Article and Find Full Text PDFThe GABA(A) receptor subtypes responsible for the anxiolytic effects of nonselective benzodiazepines (BZs) such as chlordiazepoxide (CDP) and diazepam remain controversial. Hence, molecular genetic data suggest that alpha2-rather than alpha3-containing GABA(A) receptors are responsible for the anxiolytic effects of diazepam, whereas the anxiogenic effects of an alpha3-selective inverse agonist suggest that an agonist selective for this subtype should be anxiolytic. We have extended this latter pharmacological approach to identify a compound, 4,2'-difluoro-5'-[8-fluoro-7-(1-hydroxy-1-methylethyl)imidazo[1,2-á]pyridin-3-yl]biphenyl-2-carbonitrile (TP003), that is an alpha3 subtype selective agonist that produced a robust anxiolytic-like effect in both rodent and non-human primate behavioral models of anxiety.
View Article and Find Full Text PDF