Here we test the stochastic dynamic operator (SDO) as a new framework for describing physiological signal dynamics relative to spiking or stimulus events. The SDO is a natural extension of existing spike-triggered average (STA) or stimulus-triggered average techniques currently used in neural analysis. It extends the classic STA to cover state-dependent and probabilistic responses where STA may fail.
View Article and Find Full Text PDFSpinal circuitry produces the rhythm and patterning of locomotion. However, both descending and sensory inputs are required to initiate and adapt locomotion to the environment. Spinal cord injury (SCI) disrupts descending controls of the spinal cord, producing paralysis.
View Article and Find Full Text PDFNeurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups.
View Article and Find Full Text PDFNeurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups.
View Article and Find Full Text PDFIntroduction: Previous studies support modular organization of locomotor circuitry contributing to the activation of muscles in a spatially and temporally organized manner during locomotion. Human spinal circuitry may reorganize after spinal cord injury; however, it is unclear if reorganization of spinal circuitry post-injury affects the modular organization. Here we characterize the modular synergy organization of locomotor muscle activity expressed during assisted stepping in subjects with complete and incomplete spinal cord injury (SCI) of varying chronicity, before any explicit training regimen.
View Article and Find Full Text PDFThe braided multielectrode probe (BMEP) is an ultrafine microwire bundle interwoven into a precise tubular braided structure, which is designed to be used as an invasive neural probe consisting of multiple microelectrodes for electrophysiological neural recording and stimulation. Significant advantages of BMEPs include highly flexible mechanical properties leading to decreased immune responses after chronic implantation in neural tissue and dense recording/stimulation sites (24 channels) within the 100-200 μm diameter. In addition, because BMEPs can be manufactured using various materials in any size and shape without length limitations, they could be expanded to applications in deep central nervous system (CNS) regions as well as peripheral nervous system (PNS) in larger animals and humans.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2019
Motor patterns in legged vertebrates show modularity in both young and adult animals, comprising motor synergies or primitives. Are such spinal modules observed in young mammals conserved into adulthood or altered? Conceivably, early circuit modules alter radically through experience and descending pathways' activity. We analyze lumbar motor patterns of intact adult rats and the same rats after spinal transection and compare these with adult rats spinal transected 5 days postnatally, before most motor experience, using only rats that never developed hind limb weight bearing.
View Article and Find Full Text PDFBraided multi-electrode probes (BMEPs) for neural interfaces comprise ultrafine microwire bundles interwoven into tubular braids. BMEPs provide highly flexible probes and tethers, and an open lattice structure with up to 24 recording/stimulating channels in precise geometries, currently all within a [Formula: see text] diameter footprint. This paper compares the long-term tissue effects of BMEPs ( [Formula: see text] wires) versus single conventional 50- [Formula: see text] wires, by testing nearby chronic immune response and neural survival in rat cortex.
View Article and Find Full Text PDFCervical spinal cord injury (SCI) results in permanent life-altering sensorimotor deficits, among which impaired breathing is one of the most devastating and life-threatening. While clinical and experimental research has revealed that some spontaneous respiratory improvement (functional plasticity) can occur post-SCI, the extent of the recovery is limited and significant deficits persist. Thus, increasing effort is being made to develop therapies that harness and enhance this neuroplastic potential to optimize long-term recovery of breathing in injured individuals.
View Article and Find Full Text PDFUnlabelled: Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis.
View Article and Find Full Text PDFTrunk muscle timing impairment has been associated with nonspecific low back pain (NSLBP), but this finding has not been consistent. This study investigated trunk muscle timing in a subgroup of patients with NSLBP attributed to movement coordination impairment (MCI) and matched asymptomatic controls in response to a rapid arm-raising task. Twenty-one NSLBP subjects and 21 matched controls had arm motion and surface EMG data collected from seven bilateral trunk muscles.
View Article and Find Full Text PDFCurrently little is known about how a mechanically coupled BMI system's actions are integrated into ongoing body dynamics. We tested a locomotor task augmented with a BMI system driving a robot mechanically interacting with a rat under three conditions: control locomotion (BL), "simple elastic load" (E) and "BMI with elastic load" (BMI/E). The effect of the BMI was to allow compensation of the elastic load as a function of the neural drive.
View Article and Find Full Text PDFTrunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations.
View Article and Find Full Text PDFMotor primitives allow integration across scales in the motor system and may link movement construction and circuit organization. This review examines support for primitives, and new data relating primitives to concrete circuit elements across species. Both kinematic motor primitives and muscle synergy/kinetic motor primitives are reviewed.
View Article and Find Full Text PDFThe current literature on Intra-Spinal Micro-Stimulation (ISMS) for motor prostheses is reviewed in light of neurobiological data on spinal organization, and a neurobiological perspective on output motor modularity, ISMS maps, stimulation combination effects, and stability. By comparing published data in these areas, the review identifies several gaps in current knowledge that are crucial to the development of effective intraspinal neuroprostheses. Gaps can be categorized into a lack of systematic and reproducible details of: (a) Topography and threshold for ISMS across the segmental motor system, the topography of autonomic recruitment by ISMS, and the coupling relations between these two types of outputs in practice.
View Article and Find Full Text PDFSpinal cord injury (SCI) induces significant reorganization in the sensorimotor cortex. Trunk motor control is crucial for postural stability and propulsion after low thoracic SCI and several rehabilitative strategies are aimed at trunk stability and control. However little is known about the effect of SCI and rehabilitation training on trunk motor representations and their plasticity in the cortex.
View Article and Find Full Text PDFBackground: Rodents are important model systems used to explore spinal cord injury (SCI) and rehabilitation, and brain machine interfaces (BMI). We present a new method to provide mechanical interaction for BMI and rehabilitation in rat models of SCI.
New Method: We present the design and implantation procedures for a pelvic orthosis that allows direct force application to the skeleton in brain machine interface and robot rehabilitation applications in rodents.
Objective: To test a novel braided multi-electrode probe design with compliance exceeding that of a 50 µm microwire, thus reducing micromotion- and macromotion-induced tissue stress.
Approach: We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements.
We present and apply a method that uses point process statistics to discriminate the forms of synergies in motor pattern data, prior to explicit synergy extraction. The method uses electromyogram (EMG) pulse peak timing or onset timing. Peak timing is preferable in complex patterns where pulse onsets may be overlapping.
View Article and Find Full Text PDFModular pattern generator elements, also known as burst synergies or motor primitives, have become a useful and important way of describing motor behavior, albeit controversial. It is suggested that these synergy elements may constitute part of the pattern-shaping layers of a McCrea/Rybak two-layer pattern generator, as well as being used in other ways in the spinal cord. The data supporting modular synergies range across species including humans and encompass motor pattern analyses and neural recordings.
View Article and Find Full Text PDFBrain-machine interfaces (BMIs) should ideally show robust adaptation of the BMI across different tasks and daily activities. Most BMIs have used overpracticed tasks. Little is known about BMIs in dynamic environments.
View Article and Find Full Text PDFNeonatal spinalized (NST) rats can achieve autonomous weight-supported locomotion never seen after adult injury. Mechanisms that support function in NST rats include increased importance of cortical trunk control and altered biomechanical control strategies for stance and locomotion. Hindlimbs are isolated from perturbations in quiet stance and act in opposition to forelimbs in locomotion in NST rats.
View Article and Find Full Text PDF