Publications by authors named "Simon Gaudreau"

Background: COVID-19 severity is associated with its respiratory manifestations. Neutralising antibodies against SARS-CoV-2 administered systemically have shown clinical efficacy. However, immediate and direct delivery of neutralising antibodies via inhalation might provide additional respiratory clinical benefits.

View Article and Find Full Text PDF

Dendritic cells (DCs) are key regulators of the adaptive immune response. Tolerogenic dendritic cells play a crucial role in inducing and maintaining immune tolerance in autoimmune diseases such as type 1 diabetes in humans as well as in the NOD mouse model. We previously reported that bone marrow-derived DCs (BM.

View Article and Find Full Text PDF

Dendritic cells (DCs) play a major role in innate and adaptive immunity and self-immune tolerance. Immunogenic versus tolerogenic DC functions are dictated by their levels of costimulatory molecules and their cytokine expression profile. The transcription factor C/EBPβ regulates the expression of several inflammatory genes in many cell types including macrophages.

View Article and Find Full Text PDF

Defects in dendritic cells (DCs) development and function lead to autoimmune disorders. Autoimmune diabetes in humans and NOD mice results from a breakdown of self-tolerance, ending in T cell-mediated β-cell destruction. DCs dysfunction in NOD mice results in part from a defect in the JAK-STAT5 signaling pathway associated with the idd4 susceptibility locus.

View Article and Find Full Text PDF

The histopathological hallmarks of Alzheimer disease (AD) include intraneuronal neurofibrillary tangles composed of abnormally hyperphosphorylated τ protein. Insulin dysfunction might influence AD pathology, as population-based and cohort studies have detected higher AD incidence rates in diabetic patients. But how diabetes affects τ pathology is not fully understood.

View Article and Find Full Text PDF

Tolerogenic dendritic cells represent a promising immunotherapy in autoimmunity. However, the molecular mechanisms that drive tolerogenic DCs functions are not well understood. We used GM-CSF or GM-CSF+IL-4 to generate tolerogenic (GM/DCs) and immunogenic (IL-4/DCs) BMDCs from NOD mice, respectively.

View Article and Find Full Text PDF

Dendritic cells (DCs) contribute to islet inflammation and its progression to diabetes in NOD mouse model and human. DCs play a crucial role in the presentation of autoantigen and activation of diabetogenic T cells, and IRF4 and IRF8 are crucial genes involved in the development of DCs. We have therefore investigated the expression of these genes in splenic DCs during diabetes progression in NOD mice.

View Article and Find Full Text PDF

Type 1 Diabetes (T1D) results from insulin-producing beta cells destruction by diabetogenic T lymphocytes in humans and nonobese diabetic (NOD) mice. The breakdown of tolerance has been associated with a defect in the number and the function of naturally occurring regulatory T cells (nTreg) that are the master player in peripheral tolerance. Gene knockout experiments in mouse models have shown a nonredundant activity of IL-2 related to its critical role in inducing nTreg and controlling peripheral T cell tolerance.

View Article and Find Full Text PDF

We have reported that GM-CSF treatment of NOD mice suppressed diabetes by increasing the number of tolerogenic dendritic cells (tDCs) and Tregs in the periphery. Here, we have investigated whether GM-CSF acted on NOD bone marrow DCs precursors to skew their differentiation to tDCs. DCs were generated from the bone marrow of GM-CSF-treated (GM.

View Article and Find Full Text PDF

Objective: Autoimmune diabetes in the nonobese diabetic (NOD) mouse model results from a breakdown of T-cell tolerance caused by impaired tolerogenic dendritic cell development and regulatory T-cell (Treg) differentiation. Re-establishment of the Treg pool has been shown to confer T-cell tolerance and protection against diabetes. Here, we have investigated whether murine thymic stromal lymphopoietin (TSLP) re-established tolerogenic function of dendritic cells and induced differentiation and/or expansion of Tregs in NOD mice and protection against diabetes.

View Article and Find Full Text PDF

Autoimmune diabetes results from a breakdown of self-tolerance that leads to T cell-mediated beta-cell destruction. Abnormal maturation and other defects of dendritic cells (DCs) have been associated with the development of diabetes. Evidence is accumulating that self-tolerance can be restored and maintained by semimature DCs induced by GM-CSF.

View Article and Find Full Text PDF

The cornerstone of hemostasis is the ability of the organism to limit the enzymatic processes involved, thereby avoiding thrombosis. For this, anticoagulant systems in place involve serpins, such as PAI-1 and antithrombin III, which bind to their targeted serine proteases and limit their period of activity. We have previously identified the serine protease furin as a platelet-derived enzyme with an intrinsic role in platelet functions.

View Article and Find Full Text PDF