Expression of Protocadherin (Pcdh) genes is critical to the generation of neuron identity and wiring of the nervous system. Pcdhα genes are arranged in clusters and exhibit a range of expression profiles, from stochastic to deterministic. Because Pcdhα promoters have high sequence identity and share distal enhancers, how distinct neurons choose which gene to express remains unclear.
View Article and Find Full Text PDFNeural type-specific expression of clustered Protocadherin (Pcdh) proteins is essential for the establishment of connectivity patterns during brain development. In mammals, deterministic expression of the same Pcdh isoform promotes minimal overlap of tiled projections of serotonergic neuron axons throughout the brain, while stochastic expression of Pcdh genes allows for convergence of tightly packed, overlapping olfactory sensory neuron axons into targeted structures. How can the same gene locus generate opposite transcriptional programs that orchestrate distinct spatial arrangements of axonal patterns? Here, we reveal that cell type-specific Pcdh expression and axonal behavior depend on the activity of cohesin and its unloader, WAPL (wings apart-like protein homolog).
View Article and Find Full Text PDFIn mammals, interactions between sequences within topologically associating domains enable control of gene expression across large genomic distances. Yet it is unknown how frequently such contacts occur, how long they last and how they depend on the dynamics of chromosome folding and loop extrusion activity of cohesin. By imaging chromosomal locations at high spatial and temporal resolution in living cells, we show that interactions within topologically associating domains are transient and occur frequently during the course of a cell cycle.
View Article and Find Full Text PDF