Publications by authors named "Simon G Taylor"

The production of homozygous pigs with a disruption in the GGTA1 gene, which encodes alpha1,3galactosyltransferase (alpha1,3GT), represented a critical step toward the clinical reality of xenotransplantation. Unexpectedly, the predicted complete elimination of the immunogenic Galalpha(1,3)Gal carbohydrate epitope was not observed as Galalpha(1,3)Gal staining was still present in tissues from GGTA1(-/-) animals. This shows that, contrary to previous dogma, alpha1,3GT is not the only enzyme able to synthesize Galalpha(1,3)Gal.

View Article and Find Full Text PDF

The platelet collagen receptor, glycoprotein (GP)VI, initiates platelet aggregation at low shear stress while GPIb-IX-V, which binds von Willebrand factor, elicits platelet aggregation under high shear conditions. To investigate the possibility that GPIb-IX-V and GPVI are associated on the platelet surface, we first ascertained that aggregation induced by a GPVI-specific agonist, collagen-related peptide, like collagen, is markedly cross-blocked by a GPIb alpha-specific monoclonal antibody, SZ2. Immunoprecipitation of GPIb-IX with anti-GPIb alpha from the 1% (v/v) Triton-soluble fraction of unstimulated platelets and immunoblotting with anti-GPVI demonstrated association between GPIb-IX and GPVI.

View Article and Find Full Text PDF

The important xenoepitope Galalpha(1,3)Gal was thought to be exclusively synthesized by a single alpha(1,3)galactosyltransferase. However, the cloning of the distant family member rat iGb3 synthase, which is also capable of synthesizing Galalpha(1,3)Gal as the glycolipid structure iGb3, challenges the notion that alpha(1,3)galactosyltransferase is the sole Galalpha(1,3)Gal-synthesizing enzyme. We describe the cloning of the rat homolog of alpha(1,3)galactosyltransferase, showing that indeed the rat expresses two distinct alpha(1,3)galactosyltransferases, alpha(1,3)GT and iGb3 synthase.

View Article and Find Full Text PDF

Historically, the most effective means of modifying cell surface carbohydrates has required the intracellular overexpression of glycosyltransferases or glycosidases and is dependent on the enzymes occupying a cellular localization close to the carbohydrate structures they modify. We report on relocalizing the lysosomal resident glycosidase human alpha-galactosidase to other regions of the cell, Golgi and cell surface, where it is in closer proximity for cleaving the carbohydrate structure Galalpha(1,3)Gal. Relocalization of alpha-galactosidase was achieved by using the transmembrane and cytoplasmic domains from the human protein furin, which is known to localize in the trans-Golgi network (TGN) and cell surface.

View Article and Find Full Text PDF