The coronavirus 2019 pandemic has highlighted the importance of physiologically relevant models to assist preclinical research. Here, we describe the adaptation of a human alveolus microphysiological system (MPS) model consisting of primary human alveolar epithelial and lung microvascular endothelial cells to study infection with SARS-CoV-2 at Biosafety Level 3 facility. This infection model recapitulates breathing-like stretch and culture of epithelial cells at the air-liquid interface and resulted in clinically relevant cytopathic effects including cell rounding of alveolar type 2 cells and disruption of the tight junction protein occludin.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
is a common human commensal and opportunistic fungal pathogen that is also found in non-human primates (NHPs). Here, we report the first draft sequence of NCYC 4418, a fecal isolate from an adult cynomolgus macaque.
View Article and Find Full Text PDFThe death of dopamine-producing neurons in the substantia nigra in the base of the brain is a defining pathological feature in the development of Parkinson's disease (PD). PD is, however, a multi-systemic disease, also affecting the peripheral nervous system and gastrointestinal tract (GIT) that interact via the gut-brain axis (GBA). Our dual-flow GIT-brain microphysiological system (MPS) was modified to investigate the gut-to-brain translocation of the neurotoxin trigger of PD, 1-methyl-4-phenylpyridinium (MPP), and its impact on key GIT and brain cells that contribute to the GBA.
View Article and Find Full Text PDFThe National Center for Advancing Translational Sciences (NCATS) Assay Guidance Manual (AGM) Workshop on 3D Tissue Models for Antiviral Drug Development, held virtually on 7-8 June 2022, provided comprehensive coverage of critical concepts intended to help scientists establish robust, reproducible, and scalable 3D tissue models to study viruses with pandemic potential. This workshop was organized by NCATS, the National Institute of Allergy and Infectious Diseases, and the Bill and Melinda Gates Foundation. During the workshop, scientific experts from academia, industry, and government provided an overview of 3D tissue models' utility and limitations, use of existing 3D tissue models for antiviral drug development, practical advice, best practices, and case studies about the application of available 3D tissue models to infectious disease modeling.
View Article and Find Full Text PDFKazachstania pintolopesii is an opportunistic mammalian pathobiont from the K. telluris species complex. No draft genomes of this species are currently available.
View Article and Find Full Text PDFThe ongoing emergence of SARS-CoV-2 virus variants remains a source of concern because it is accompanied by the potential for increased virulence as well as evasion of immunity. Here we show that, although having an almost identical spike gene sequence as another Omicron variant (BA.5.
View Article and Find Full Text PDFThe mutation profile of the SARS-CoV-2 Omicron (lineage BA.1) variant posed a concern for naturally acquired and vaccine-induced immunity. We investigated the ability of prior infection with an early SARS-CoV-2 ancestral isolate (Australia/VIC01/2020, VIC01) to protect against disease caused by BA.
View Article and Find Full Text PDFThe golden Syrian hamster () is now commonly used in preclinical research for the study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the assessment of vaccines, drugs and therapeutics. Here, we show that hamsters inoculated via the intranasal route with the same infectious virus dose of prototypical SARS-CoV-2 administered in a different volume present with different clinical signs, weight loss and viral shedding, with a reduced volume resulting in reduced severity of disease similar to that obtained by a 500-fold reduction in the challenge dose. The tissue burden of the virus and the severity of pulmonary pathology were also significantly affected by different challenge inoculum volumes.
View Article and Find Full Text PDFIn the summer of 2020, it became clear that the genetic composition of SARS-CoV-2 was changing rapidly. This was highlighted by the rapid emergence of the D614G mutation at that time. In the autumn of 2020, the project entitled "Agility" was initiated with funding from the Coalition for Epidemic Preparedness Innovations (CEPI) to assess new variants of SARS-CoV-2.
View Article and Find Full Text PDFThe cynomolgus macaque, , is a non-human primate (NHP) widely used in biomedical research as its genetics, immunology and physiology are similar to those of humans. They may also be a useful model of the intestinal microbiome as their prokaryome resembles that of humans. However, beyond the prokaryome relatively little is known about other constituents of the macaque intestinal microbiome including the mycobiome.
View Article and Find Full Text PDFFiloviruses cause high-consequence infections with limited approved medical countermeasures (MCMs). MCM development is dependent upon well-characterized animal models for the assessment of antiviral agents and vaccines. Following large-scale Ebola virus (EBOV) disease outbreaks in Africa, some survivors are left with long-term sequelae and persistent virus in immune-privileged sites for many years.
View Article and Find Full Text PDFThere is an urgent requirement for safe and effective vaccines to prevent COVID-19. A concern for the development of new viral vaccines is the potential to induce vaccine-enhanced disease (VED). This was reported in several preclinical studies with both SARS-CoV-1 and MERS vaccines but has not been reported with SARS-CoV-2 vaccines.
View Article and Find Full Text PDFAn array of SARS-CoV-2 virus variants have been isolated, propagated and used in in vitro assays, in vivo animal studies and human clinical trials. Observations of working stocks of SARS-CoV-2 suggest that sequential propagation in Vero cells leads to critical changes in the region of the furin cleavage site, which significantly reduce the value of the working stock for critical research studies. Serially propagating SARS-CoV-2 in Vero E6 cells leads to rapid increases in genetic variants while propagation in other cell lines (e.
View Article and Find Full Text PDFVirus neutralization assays measure neutralizing antibodies in serum and plasma, and the plaque reduction neutralization test (PRNT) is considered the gold standard for measuring levels of these antibodies for many viral diseases. We have developed procedures for the standard PRNT, microneutralization assay (MNA) and pseudotyped virus neutralization assay (PNA) for severe acute respiratory syndrome coronavirus 2. The MNA offers advantages over the PRNT by reducing assay time, allowing increased throughput and reducing operator workload while remaining dependent upon the use of wild-type virus.
View Article and Find Full Text PDFThere is a vital need for authentic COVID-19 animal models to enable the pre-clinical evaluation of candidate vaccines and therapeutics. Here we report a dose titration study of SARS-CoV-2 in the ferret model. After a high (5 × 10 pfu) and medium (5 × 10 pfu) dose of virus is delivered, intranasally, viral RNA shedding in the upper respiratory tract (URT) is observed in 6/6 animals, however, only 1/6 ferrets show similar signs after low dose (5 × 10 pfu) challenge.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19.
View Article and Find Full Text PDFIn light of the recent outbreak of Ebola virus (EBOV) disease in West Africa, there have been renewed efforts to search for effective antiviral countermeasures. A range of compounds currently available with broad antimicrobial activity have been tested for activity against EBOV. Using live EBOV, eighteen candidate compounds were screened for antiviral activity in vitro.
View Article and Find Full Text PDFConcern over the release of variola virus as an agent of bioterrorism remains high and a rapid vaccination regimen is desirable for use in the event of a confirmed release of virus. A single, high-dose (5×10(8) TCID50) of Bavarian Nordic's IMVAMUNE was tested in a Phase-II clinical trial, in humans, as a substitute for the standard (1×10(8) TCID50), using a 2-dose, 28-days apart regimen. Prior to this clinical trial taking place a Good Laboratory Practice, repeated high-dose, toxicology study was performed using IMVAMUNE, in New Zealand white rabbits and the results are reported here.
View Article and Find Full Text PDFSeveral candidates for a vaccine against Burkholderia pseudomallei, the causal bacterium of melioidosis, have been developed, and a rational approach is now needed to select and advance candidates for testing in relevant nonhuman primate models and in human clinical trials. Development of such a vaccine was the topic of a meeting in the United Kingdom in March 2014 attended by international candidate vaccine developers, researchers, and government health officials. The focus of the meeting was advancement of vaccines for prevention of natural infection, rather than for protection from the organism's known potential for use as a biological weapon.
View Article and Find Full Text PDFHere, we describe the draft genome sequence of Burkholderia pseudomallei NCTC 13392. This isolate has been distributed as K96243, but distinct genomic differences have been identified. The genomic sequence of this isolate will provide the genomic context for previously conducted functional studies.
View Article and Find Full Text PDFTo support the licensure of a new and safer vaccine to protect people against smallpox, a monkeypox model of infection in cynomolgus macaques, which simulates smallpox in humans, was used to evaluate two vaccines, Acam2000 and Imvamune, for protection against disease. Animals vaccinated with a single immunization of Imvamune were not protected completely from severe and/or lethal infection, whereas those receiving either a prime and boost of Imvamune or a single immunization with Acam2000 were protected completely. Additional parameters, including clinical observations, radiographs, viral load in blood, throat swabs, and selected tissues, vaccinia virus-specific antibody responses, immunophenotyping, extracellular cytokine levels, and histopathology were assessed.
View Article and Find Full Text PDFClinical definitions of melioidosis and inhalation-acquired melioidosis (Burkholderia pseudomallei infection) are described together with the evidence used to develop these definitions. Such definitions support accurate public health reporting, preparedness planning for deliberate B. pseudomallei release, design of experimental models, and categorization of naturally acquired melioidosis.
View Article and Find Full Text PDF