This analysis presents data from a new perspective offering key insights into the spread patterns of norovirus and influenza epidemic events. We utilize optic flow analysis to gain an informed overview of a wealth of statistical epidemiological data and identify trends in movement of influenza waves throughout Germany on the NUTS 3 level (413 locations) which maps municipalities on European level. We show that Influenza and norovirus seasonal outbreak events have a highly distinct pattern.
View Article and Find Full Text PDFMembers of the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX PROTEIN (TIR1/AFB) family are known auxin receptors. To analyze the possible receptor function of AUXIN BINDING PROTEIN1 (ABP1), an auxin receptor currently under debate, we performed different approaches. We performed a pharmacological approach using α-(2,4-dimethylphenylethyl-2-oxo)-indole-3-acetic acid (auxinole), α-(phenylethyl-2-oxo)-indole-3-acetic acid (PEO-IAA), and 5-fluoroindole-3-acetic acid (5-F-IAA) to discriminate between ABP1- and TIR1/AFB-mediated processes in Arabidopsis ().
View Article and Find Full Text PDFIn an era of genomics, proteomics, and metabolomics a large number of mutants are available. The discovery of their phenotypes is fast becoming the bottleneck of molecular plant physiology. This crisis can be overcome by imaging-based phenotyping, an emerging, rapidly developing and innovative approach integrating plant and computer science.
View Article and Find Full Text PDFNext generation phenotyping of auxin response mutants will be greatly facilitated by the ability to record rapid growth responses in roots and hypocotyls at high throughput and at high temporal resolution. As Arabidopsis seedlings are very tiny and fragile, imaging is the only adequate way for data acquisition. As camera-based systems described before have a limited throughput, we used commercial flatbed scanners to record a large number of simultaneous experiments.
View Article and Find Full Text PDF