Publications by authors named "Simon Fogarty"

As biospectroscopy techniques continue to be developed for screening or diagnosis within a point-of-care setting, an important development for this field will be high-throughput optimization. For many of these techniques, it is therefore necessary to adapt and develop parameters to generate a robust yet simple approach delivering high-quality spectra from biological samples. Specifically, this is important for surface-enhanced Raman spectroscopy (SERS) wherein there are multiple variables that can be optimised to achieve an enhancement of the Raman signal from a sample.

View Article and Find Full Text PDF

We applied surface-enhanced Raman spectroscopy (SERS) to cationic gold-labeled endothelial cells to derive SERS-enhanced spectra of the bimolecular makeup of the plasma membrane. A two-step protocol with cationic charged gold nanoparticles followed by silver-intensification to generate silver nanoparticles on the cell surface was employed. This protocol of post-labelling silver-intensification facilitates the collection of SERS-enhanced spectra from the cell membrane without contribution from conjugated antibodies or other molecules.

View Article and Find Full Text PDF

IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms.

View Article and Find Full Text PDF

Despite numerous advances in "omics" research, early detection of ovarian cancer still remains a challenge. The aim of this study was to determine whether attenuated total reflection Fourier-transform infrared (ATR-FTIR) or Raman spectroscopy could characterise alterations in the biomolecular signatures of human blood plasma/serum obtained from ovarian cancer patients compared to non-cancer controls. Blood samples isolated from ovarian cancer patients (n = 30) and healthy controls (n = 30) were analysed using ATR-FTIR spectroscopy.

View Article and Find Full Text PDF

Studies of the decades-long latent stages of breast carcinogenesis have been limited to when hyperplastic lesions are already present. Investigations of earlier stages of breast cancer (BC) latency have been stymied by the lack of fiducial biomarkers needed to identify where in histologically normal tissues progression toward a BC might be taking place. Recent evidence suggests that a marker of chronic oxidative stress (OxS), protein adducts of 4-hydroxy-2-nonenal (4HNE), can meet this need.

View Article and Find Full Text PDF

Nanotechnologies generate a wide range of engineered nanomaterials that enter into our ecosystem, especially carbon-based nanoparticles (CNPs). As these novel materials acquire ever increasing numbers of applications, they may pose a risk to organisms, including humans. However, our knowledge of nanoparticle-induced effects remains limited.

View Article and Find Full Text PDF

Understanding stem cell (SC) biology remains challenging and one of the few human tissues within which their in situ location is well characterized is the cornea. Individual human corneal epithelial cells were isolated from biopsies of live tissues using fluorescence-activated cell sorting (FACS); these were divided into putative SCs, transit-amplifying (TA) cells and terminally-differentiated (TD) cells. Employing synchrotron radiation-based Fourier-transform infrared (SR-FTIR) microspectroscopy with a focal plane array (FPA), sub-cellular spatial resolution analysis of unstained isolated cells was achieved as a consequence of the brilliance of a 12 collimated beams arrangement allowing rapid spectral acquisition.

View Article and Find Full Text PDF

We applied surface-enhanced Raman spectroscopy (SERS) to immunolabeled endothelial cells to derive enhanced spectra of the biomolecular makeup of the cellular surface. A two-step immunolabeling protocol with gold-conjugated antibodies coupled with silver enhancement to attach silver nanoparticles to the cell surface was employed. This approach generated ∼50-fold SERS enhancement of spectral signals.

View Article and Find Full Text PDF