Publications by authors named "Simon Ferre"

HgTe nanocrystals, thanks to quantum confinement, present a broadly tunable band gap all over the infrared spectral range. In addition, significant efforts have been dedicated to the design of infrared sensors with an absorbing layer made of nanocrystals. However, most efforts have been focused on single pixel sensors.

View Article and Find Full Text PDF

Mercury telluride (HgTe) nanocrystals are among the most versatile infrared (IR) materials with the absorption of lowest energy optical absorption which can be tuned from the visible to the terahertz range. Therefore, they have been extensively considered as near IR emitters and as absorbers for low-cost IR detectors. However, the electroluminescence of HgTe remains poorly investigated despite its ability to go toward longer wavelengths compared to traditional lead sulfide (PbS).

View Article and Find Full Text PDF

Infrared applications remain too often a niche market due to their prohibitive cost. Nanocrystals offer an interesting alternative to reach cost disruption especially in the short-wave infrared (SWIR, λ < 1.7 μm) where material maturity is now high.

View Article and Find Full Text PDF

Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied.

View Article and Find Full Text PDF

The aim of this article is to determine the best dielectric between SiO, SiN and TiO for quantum cascade laser (QCL) passivation layers depending on the operation wavelength. It relies on both Mueller ellipsometry measurement to accurately determine the optical constants (the refractive index n and the extinction coefficient k) of the three dielectrics, and optical simulations to determine the mode overlap with the dielectric and furthermore the modal losses in the passivation layer. The impact of dielectric thermal conductivities are taken into account and shown to be not critical on the laser performances.

View Article and Find Full Text PDF

A highly birefringent polarization-maintaining chalcogenide microstructured optical fiber (MOF) covering the 3-8.5 µm wavelength range has been realized for the first time. The fiber cross-section consists of 3 rings of circular air holes with 2 larger holes adjacent to the core.

View Article and Find Full Text PDF