Publications by authors named "Simon F Scrace"

Over 20% of cancer patients will suffer metastatic spread to the brain, and prognosis remains poor. Communication between tumour cells and host tissue is essential during metastasis, yet little is known of the processes underlying such interactions in the brain.Here we test the hypothesis that cross-talk between tumour cells and host brain cells, through tumour cell leukocyte function associated protein-1 (LFA-1), is critical in metastasis development.

View Article and Find Full Text PDF

The RASSF family of proteins has been extensively studied in terms of their genetics, structure and function. One of the functions that has been increasingly studied is the role of the RASSF proteins in the DNA damage response. Surprisingly, this research, which encompasses both the classical and N-terminal RASSF proteins, has revealed an involvement of the RASSFs in oncogenic pathways as well as the more familiar tumour suppressor pathways usually associated with the RASSF family members.

View Article and Find Full Text PDF

Pin1 is an emerging oncology target strongly implicated in Ras and ErbB2-mediated tumourigenesis. Pin1 isomerizes bonds linking phospho-serine/threonine moieties to proline enabling it to play a key role in proline-directed kinase signalling. Here we report a novel series of Pin1 inhibitors based on a phenyl imidazole acid core that contains sub-μM inhibitors.

View Article and Find Full Text PDF

The peptidyl prolyl cis/trans isomerase Pin1 is a promising molecular target for anti-cancer therapeutics. Here we report the structure-guided evolution of an indole 2-carboxylic acid fragment hit into a series of alpha-benzimidazolyl-substituted amino acids. Examples inhibited Pin1 activity with IC(50) <100nM, but were inactive on cells.

View Article and Find Full Text PDF

Transient treatment with small molecule CDK inhibitors is toxic to cancer cells and leads to depletion of anti-apoptotic proteins and Chk1, coupled with DNA damage and induction of apoptosis. Here we have examined, which of these phenomena are necessary for CDK inhibitors to have an anti-proliferative effect. We find that 24 hours treatment with either a primarily CDK2-specific, or a primarily CDK7/9-specific, antagonist eliminates proliferative potential even if apoptosis is blocked and the tendency of CDK inhibition to result in DNA damage is overcome by expression of recombinant Chk1.

View Article and Find Full Text PDF