The maintenance of peripheral naive T lymphocytes in humans is dependent on their homeostatic division, not continuing emigration from the thymus, which undergoes involution with age. However, postthymic maintenance of naive T cells is still poorly understood. Previously we reported that recent thymic emigrants (RTEs) are contained in CD31+CD25- naive T cells as defined by their levels of signal joint T cell receptor rearrangement excision circles (sjTRECs).
View Article and Find Full Text PDFExpression of the CTLA-4 gene is absolutely required for immune homeostasis, but aspects of its molecular nature remain undefined. In particular, the characterization of the soluble CTLA-4 (sCTLA-4) protein isoform generated by an alternatively spliced mRNA of CTLA4 lacking transmembrane-encoding exon 3 has been hindered by the difficulty in distinguishing it from the transmembrane isoform of CTLA-4, Tm-CTLA-4. In the current study, sCTLA-4 has been analyzed using novel mAbs and polyclonal Abs specific for its unique C-terminal amino acid sequence.
View Article and Find Full Text PDFThe chromosome 16p13 region has been associated with several autoimmune diseases, including type 1 diabetes (T1D) and multiple sclerosis (MS). CLEC16A has been reported as the most likely candidate gene in the region, since it contains the most disease-associated single-nucleotide polymorphisms (SNPs), as well as an imunoreceptor tyrosine-based activation motif. However, here we report that intron 19 of CLEC16A, containing the most autoimmune disease-associated SNPs, appears to behave as a regulatory sequence, affecting the expression of a neighbouring gene, DEXI.
View Article and Find Full Text PDFIn eukaryotic cells the stability and function of many proteins are regulated by the addition of ubiquitin or ubiquitin-like peptides. This process is dependent upon the sequential action of an E1-activating enzyme, an E2-conjugating enzyme, and an E3 ligase. Different combinations of these proteins confer substrate specificity and the form of protein modification.
View Article and Find Full Text PDFThe pure hereditary spastic paraplegias (HSPs) are a group of conditions in which there is a progressive length-dependent degeneration of the distal ends of the corticospinal tract axons, resulting in spastic paralysis of the legs. Pure HSPs are most frequently inherited in an autosomal-dominant pattern and are commonly caused by mutations either in the SPG4 gene spastin or in the SPG3A gene atlastin. To identify binding partners for spastin, we carried out a yeast two-hybrid screen on a brain cDNA library, using spastin as bait.
View Article and Find Full Text PDFPure hereditary spastic paraplegia is characterized by length-dependent degeneration of the distal ends of long axons. Mutations in spastin are the most common cause of the condition. We set out to investigate the function of spastin using a yeast two-hybrid approach to identify interacting proteins.
View Article and Find Full Text PDF