Publications by authors named "Simon Deycmar"

Article Synopsis
  • Rhesus macaques naturally develop colorectal cancers (CRC) that closely resemble human CRC in terms of histology, progression, and genetic characteristics, making them valuable for studying cancer immunotherapy.
  • Detailed analyses, including advanced imaging and molecular techniques like DNA sequencing and transcriptomics, confirmed similarities in mutation patterns and functional behaviors between macaque and human CRCs, particularly highlighting MLH1 loss and microsatellite instability.
  • The research also indicated a significant presence of DNA hypermethylation, particularly affecting MLH1, contributing to alterations in DNA topology that may impact transcription factor binding, showcasing the complex molecular landscape of CRC in these primates.
View Article and Find Full Text PDF

Cerebrovascular reactivity (CVR) is a measure of cerebral small vessels' ability to respond to changes in metabolic demand and can be quantified using magnetic resonance imaging (MRI) coupled with a vasoactive stimulus. Reduced CVR occurs with neurodegeneration and is associated with cognitive decline. While commonly measured in humans, few studies have evaluated CVR in animal models.

View Article and Find Full Text PDF

Purpose: Long-term survivors of brain irradiation can experience irreversible injury and cognitive impairment. T1-weighted and diffusion tensor magnetic resonance imaging (MRI) are used to evaluate brain volume and white matter (WM) microstructure in neurodevelopmental and neurodegenerative conditions. The goal of this study was to evaluate the long-term effects of single-dose total-body irradiation (TBI) or TBI with 5% partial-body sparing on brain volumetrics and WM integrity in macaques.

View Article and Find Full Text PDF

The complexity of cancer immunotherapy (CIT) demands reliable preclinical models to successfully translate study findings to the clinics. Non-human primates (NHPs; here referring to rhesus and cynomolgus macaques) share broad similarities with humans including physiology, genetic homology, and importantly also immune cell populations, immune regulatory mechanisms, and protein targets for CIT. Furthermore, NHP naturally develop cancers such as colorectal and breast cancer with an incidence, pathology, and age pattern comparable to humans.

View Article and Find Full Text PDF

Objective: Hypersensitivity towards proton versus photon irradiation was demonstrated in homologous recombination repair (HRR)-deficient cell lines. Hence, combined treatment concepts targeting HRR provide a rational for potential pharmaceutical exploitation. The HSP90 inhibitor ganetespib (STA-9090) downregulates a multitude of HRR-associated proteins and sensitizes for certain chemotherapeutics.

View Article and Find Full Text PDF

Although particle therapy with protons has proven to be beneficial in the treatment of chondrosarcoma compared to photon-based (X-ray) radiation therapy, the cellular and molecular mechanisms have not yet been sufficiently investigated. Cell viability and colony forming ability were analyzed after X-ray and proton irradiation (IR). Cell cycle was analyzed using flow cytometry and corresponding regulator genes and key players of the DNA repair mechanisms were measured using next generation sequencing, protein expression and immunofluorescence staining.

View Article and Find Full Text PDF

Purpose: A relative biological effectiveness (RBE) of 1.1 is commonly used in clinical proton therapy, irrespective of tissue type and depth. This in vitro study was conducted to quantify the RBE of scanned protons as a function of the dose-averaged linear energy transfer (LET ) and the sensitivity factor (α/ß) .

View Article and Find Full Text PDF

Technical improvements in clinical radiotherapy for maximizing cytotoxicity to the tumor while limiting negative impact on co-irradiated healthy tissues include the increasing use of particle therapy (e.g., proton therapy) worldwide.

View Article and Find Full Text PDF

Clinical parameters and empirical evidence are the primary determinants for current treatment planning in radiation oncology. Personalized medicine in radiation oncology is only at the very beginning to take the genetic background of a tumor entity into consideration to define an individual treatment regimen, the total dose or the combination with a specific anticancer agent. Likewise, stratification of patients towards proton radiotherapy is linked to its physical advantageous energy deposition at the tumor site with minimal healthy tissue being co-irradiated distal to the target volume.

View Article and Find Full Text PDF

A growing number of diseases are being linked to protein misfolding and amyloid formation. Recently, p53 was also shown to associate into amyloid aggregates, raising the question of whether cancer development is associated with protein aggregation as well. However, a lack of suitable tools has hampered the evaluation of their clinical relevance.

View Article and Find Full Text PDF

DNA repair deficiencies and genome instability are common features and hallmarks of cancer and are ubiquitously found in the full spectrum of malignant diseases. Heritable DNA repair deficiencies, for example, due to and mutations, and subsequent loss of heterozygosity in mammary, ovarian, and prostate carcinoma, are risk factors for the early development of cancer. Despite their detrimental role in tumorigenesis, these deficiencies also provide novel opportunities for treatment options.

View Article and Find Full Text PDF

High-grade serous ovarian cancer (HGSOC) is characterized by a mutation rate of up to 96.7% and associated with a more aggressive tumor biology. The origin of HGSOC is thought to arise either from fallopian tube secretory cells or the ovarian surface epithelium/inclusion cysts, the former with more evidence.

View Article and Find Full Text PDF

High grade serous ovarian cancer (HGSOC) is among the most deadly malignancies in women, frequently involving peritoneal tumor spread. Understanding molecular mechanisms of peritoneal metastasis is essential to develop urgently needed targeted therapies. We described two peritoneal tumor spread types in HGSOC apparent during surgery: miliary (numerous millet-sized implants) and non-miliary (few big, bulky implants).

View Article and Find Full Text PDF