Publications by authors named "Simon DeDeo"

The abilities to predict, explain, and control might arise out of operations on a common underlying representation or, conversely, from independent cognitive processes. We developed a novel experimental paradigm to explore how individuals might use probabilistic mental models in these three tasks, under varying levels of complexity and uncertainty. Participants interacted with a simple chatbot defined by a finite-state machine, and were then tested on their ability to predict, explain, and control the chatbot's responses.

View Article and Find Full Text PDF

The space of possible human cultures is vast, but some cultural configurations are more consistent with cognitive and social constraints than others. This leads to a "landscape" of possibilities that our species has explored over millennia of cultural evolution. However, what does this fitness landscape, which constrains and guides cultural evolution, look like? The machine-learning algorithms that can answer these questions are typically developed for large-scale datasets.

View Article and Find Full Text PDF

A wide variety of cultural practices have a 'tacit' dimension, whose principles are neither obvious to an observer, nor known explicitly by experts. This poses a problem for cultural evolution: if beginners cannot spot the principles to imitate, and experts cannot say what they are doing, how can tacit knowledge pass from generation to generation? We present a domain-general model of 'tacit teaching', drawn from statistical physics, that shows how high-accuracy transmission of tacit knowledge is possible. It applies when the practice's underlying features are subject to interacting and competing constraints.

View Article and Find Full Text PDF

Pietraszewski's representation scheme is parsimonious and intuitive. However, internal mental representations may be subject to resource constraints that prefer more unusual systems such as sparse coding or compressed sensing. Pietraszewski's scheme may be most useful for understanding how agents communicate.

View Article and Find Full Text PDF

Mathematical proofs are both paradigms of certainty and some of the most explicitly-justified arguments that we have in the cultural record. Their very explicitness, however, leads to a paradox, because the probability of error grows exponentially as the argument expands. When a mathematician encounters a proof, how does she come to believe it? Here we show that, under a cognitively-plausible belief formation mechanism combining deductive and abductive reasoning, belief in mathematical arguments can undergo what we call an epistemic phase transition: a dramatic and rapidly-propagating jump from uncertainty to near-complete confidence at reasonable levels of claim-to-claim error rates.

View Article and Find Full Text PDF

Over their first years of life, children learn not just the words of their native languages, but how to use them to communicate. Because manual annotation of communicative intent does not scale to large corpora, our understanding of communicative act development is limited to case studies of a few children at a few time points. We present an approach to automatic identification of communicative acts using a hidden topic Markov model, applying it to the conversations of English-learning children in the CHILDES database.

View Article and Find Full Text PDF

In this article we describe our experiences with computational text analysis involving rich social and cultural concepts. We hope to achieve three primary goals. First, we aim to shed light on thorny issues not always at the forefront of discussions about computational text analysis methods.

View Article and Find Full Text PDF

Members of a social species need to make appropriate decisions about who, how, and when to interact with others in their group. However, it has been difficult for researchers to detect the inputs to these decisions and, in particular, how much information individuals actually have about their social context. We present a method that can serve as a social assay to quantify how patterns of aggression depend upon information about the ranks of individuals within social dominance hierarchies.

View Article and Find Full Text PDF

Previous work has demonstrated that certain speech patterns vary systematically between sociodemographic groups, so that in some cases the way a person speaks is a valid cue to group membership. Our work addresses whether or not participants use these linguistic cues when assessing a speaker's likely political identity. We use a database of speeches by U.

View Article and Find Full Text PDF

Recent work in cognitive science has uncovered a diversity of explanatory values, or dimensions along which we judge explanations as better or worse. We propose a Bayesian account of these values that clarifies their function and shows how they fit together to guide explanation-making. The resulting taxonomy shows that core values from psychology, statistics, and the philosophy of science emerge from a common mathematical framework and provide insight into why people adopt the explanations they do.

View Article and Find Full Text PDF

Asking questions is a pervasive human activity, but little is understood about what makes them difficult to answer. An analysis of a pair of large databases, New York Times crosswords and questions from the quiz-show Jeopardy, establishes two orthogonal dimensions of question difficulty: obscurity (the rarity of the answer) and opacity (the indirectness of question cues, operationalized with word2vec). The importance of opacity, and the role of synergistic information in resolving it, suggests that accounts of difficulty in terms of prior expectations captures only a part of the question-asking process.

View Article and Find Full Text PDF

The French Revolution brought principles of "liberty, equality, fraternity" to bear on the day-to-day challenges of governing what was then the largest country in Europe. Its experiments provided a model for future revolutions and democracies across the globe, but this first modern revolution had no model to follow. Using reconstructed transcripts of debates held in the Revolution's first parliament, we present a quantitative analysis of how this body managed innovation.

View Article and Find Full Text PDF

In complex environments, there are costs to both ignorance and perception. An organism needs to track fitness-relevant information about its world, but the more information it tracks, the more resources it must devote to perception. As a first step towards a general understanding of this trade-off, we use a tool from information theory, rate-distortion theory, to study large, unstructured environments with fixed, randomly drawn penalties for stimuli confusion ('distortions').

View Article and Find Full Text PDF

For many organisms, the number of sensory neurons is largely determined during development, before strong environmental cues are present. This is despite the fact that environments can fluctuate drastically both from generation to generation and within an organism's lifetime. How can organisms get by by hard coding the number of sensory neurons? We approach this question using rate-distortion theory.

View Article and Find Full Text PDF

Search in an environment with an uncertain distribution of resources involves a trade-off between exploitation of past discoveries and further exploration. This extends to information foraging, where a knowledge-seeker shifts between reading in depth and studying new domains. To study this decision-making process, we examine the reading choices made by one of the most celebrated scientists of the modern era: Charles Darwin.

View Article and Find Full Text PDF

Dominance hierarchies are group-level properties that emerge from the aggression of individuals. Although individuals can gain critical benefits from their position in a hierarchy, we do not understand how real-world hierarchies form. Nor do we understand what signals and decision-rules individuals use to construct and maintain hierarchies in the absence of simple cues such as size or spatial location.

View Article and Find Full Text PDF

Reciprocity is a vital feature of social networks, but relatively little is known about its temporal structure or the mechanisms underlying its persistence in real world behavior. In pursuit of these two questions, we study the stationary and dynamical signals of reciprocity in a network of manioc beer (Spanish: ; Tsimane': ) drinking events in a Tsimane' village in lowland Bolivia. At the stationary level, our analysis reveals that social exchange within the community is heterogeneously patterned according to kinship and spatial proximity.

View Article and Find Full Text PDF

The jury trial is a critical point where the state and its citizens come together to define the limits of acceptable behavior. Here we present a large-scale quantitative analysis of trial transcripts from the Old Bailey that reveal a major transition in the nature of this defining moment. By coarse-graining the spoken word testimony into synonym sets and dividing the trials based on indictment, we demonstrate the emergence of semantically distinct violent and nonviolent trial genres.

View Article and Find Full Text PDF

We investigate the computational structure of a paradigmatic example of distributed social interaction: that of the open-source Wikipedia community. We examine the statistical properties of its cooperative behavior, and perform model selection to determine whether this aspect of the system can be described by a finite-state process, or whether reference to an effectively unbounded resource allows for a more parsimonious description. We find strong evidence, in a majority of the most-edited pages, in favor of a collective-state model, where the probability of a "revert" action declines as the square root of the number of non-revert actions seen since the last revert.

View Article and Find Full Text PDF

A common feature of biological networks is the geometrical property of self-similarity. Molecular regulatory networks through to circulatory systems, nervous systems, social systems and ecological trophic networks show self-similar connectivity at multiple scales. We analyse the relationship between topology and signalling in contrasting classes of such topologies.

View Article and Find Full Text PDF

Abstracting an effective theory from a complicated process is central to the study of complexity. Even when the underlying mechanisms are understood, or at least measurable, the presence of dissipation and irreversibility in biological, computational, and social systems makes the problem harder. Here, we demonstrate the construction of effective theories in the presence of both irreversibility and noise, in a dynamical model with underlying feedback.

View Article and Find Full Text PDF

We analyse the timescales of conflict decision-making in a primate society. We present evidence for multiple, periodic timescales associated with social decision-making and behavioural patterns. We demonstrate the existence of periodicities that are not directly coupled to environmental cycles or known ultraridian mechanisms.

View Article and Find Full Text PDF

Conflict destabilizes social interactions and impedes cooperation at multiple scales of biological organization. Of fundamental interest are the causes of turbulent periods of conflict. We analyze conflict dynamics in an monkey society model system.

View Article and Find Full Text PDF