Unlabelled: Phagosomal lysis is a key aspect of mycobacterial infection of host macrophages. Acetylation is a protein modification mediated enzymatically by N-acetyltransferases (NATs) that impacts bacterial pathogenesis and physiology. To identify NATs required for lytic activity, we leveraged a nontubercular pathogen and an established model for hemolysis is a proxy for phagolytic activity.
View Article and Find Full Text PDFThe mycobacterial cell envelope is a major virulence determinant in pathogenic mycobacteria. Specific outer lipids play roles in pathogenesis, modulating the immune system and promoting the secretion of virulence factors. ESX-1 (ESAT-6 system-1) is a conserved protein secretion system required for mycobacterial pathogenesis.
View Article and Find Full Text PDFN-terminal acetylation in is correlated with pathogenic activity. We used genomics and bottom-up proteomics to identify protein Emp1 as the sole acetyltransferase responsible for acetylation of EsxA, a known virulence factor. Using custom data analysis, we screened the proteome to identify 22 additional putative substrates of Emp1.
View Article and Find Full Text PDFUnlabelled: The biomarker CA125, a peptide epitope located in several tandem repeats of the mucin MUC16, is the gold standard for monitoring regression and recurrence of high-grade serous ovarian cancer in response to therapy. However, the CA125 epitope along with several structural features of the MUC16 molecule are ill defined. One central aspect still unresolved is the number of tandem repeats in MUC16 and how many of these repeats contain the CA125 epitope.
View Article and Find Full Text PDFN-terminal acetylation is a protein modification that broadly impacts basic cellular function and disease in higher organisms. Although bacterial proteins are N-terminally acetylated, little is understood how N-terminal acetylation impacts bacterial physiology and pathogenesis. Mycobacterial pathogens cause acute and chronic disease in humans and in animals.
View Article and Find Full Text PDFN-terminal protein acetylation is a ubiquitous post-translational modification that broadly impacts diverse cellular processes in higher organisms. Bacterial proteins are also N-terminally acetylated, but the mechanisms and consequences of this modification in bacteria are poorly understood. We previously quantified widespread N-terminal protein acetylation in pathogenic mycobacteria (C.
View Article and Find Full Text PDFN-linked glycosylation is an important post-translational modification that is difficult to identify and quantify in traditional bottom-up proteomics experiments. Enzymatic deglycosylation of proteins by peptide:-glycosidase F (PNGase F) prior to digestion and subsequent mass spectrometry analysis has been shown to improve coverage of various N-linked glycopeptides, but the inclusion of this step may add up to a day to an already lengthy sample preparation process. An efficient way to integrate deglycosylation with bottom-up proteomics would be a valuable contribution to the glycoproteomics field.
View Article and Find Full Text PDFBottom-up proteomics (BUP) produces rich data, but visualization and analysis are time-consuming and often require programming skills. Many tools analyze these data at the proteome-level, but fewer options exist for individual proteins. Sequence coverage maps are common, but do not proportion peptide intensity.
View Article and Find Full Text PDFReversed-phase liquid chromatography (RPLC) is widely used to reduce sample complexity prior to mass spectrometry (MS) analysis in bottom-up proteomics. Improving peptide separation in complex samples enables lower-abundance proteins to be identified. Multidimensional separations that combine orthogonal separation modes improve protein and peptide identifications over RPLC alone.
View Article and Find Full Text PDFAptamers have many useful attributes including specific binding to molecular targets. After aptamers are identified, their target binding must be characterized. Fluorescence anisotropy (FA) is one technique that can be used to characterize affinity and to optimize aptamer-target interactions.
View Article and Find Full Text PDF