Silver nanowires (AgNW) are attractive materials that are anticipated to be incorporated into numerous consumer products such as textiles, touchscreen display, and medical devices that could be in direct contact with skin. There are very few studies on the cellular toxicity of AgNW and no studies that have specifically evaluated the potential toxicity from dermal exposure. To address this question, we investigated the dermal toxicity after acute exposure of polymer-coated AgNW with two sizes using two models, human primary keratinocytes and human reconstructed epidermis.
View Article and Find Full Text PDFPersonal monitors based on unipolar diffusion charging (miniDiSC/DiSCmini, NanoTracer, Partector) can be used to assess the individual exposure to nanoparticles in different environments. The charge acquired by the aerosol particles is nearly proportional to the particle diameter and, by coincidence, also nearly proportional to the alveolar lung-deposited surface area (LDSA), the metric reported by all three instruments. In addition, the miniDiSC/DiSCmini and the NanoTracer report particle number concentration and mean particle size.
View Article and Find Full Text PDFExposure to airborne agents needs to be assessed in the personal breathing zone by the use of personal measurement equipment. Specific measurement devices for assessing personal exposure to airborne nanomaterials have only become available in the recent years. They can be differentiated into direct-reading personal monitors and personal samplers that collect the airborne nanomaterials for subsequent analyses.
View Article and Find Full Text PDFFor exposure and risk assessment in occupational settings involving engineered nanomaterials (ENMs), it is important to understand the mechanisms of release and how they are influenced by the ENM, the matrix material, and process characteristics. This review summarizes studies providing ENM release information in occupational settings, during different industrial activities and using various nanomaterials. It also assesses the contextual information - such as the amounts of materials handled, protective measures, and measurement strategies - to understand which release scenarios can result in exposure.
View Article and Find Full Text PDFIn the context of assessing potential risks of engineered nanoparticles (ENPs), life cycle thinking can represent a holistic view on the impacts of ENPs through the entire value chain of nano-enhanced products from production, through use, and finally to disposal. Exposure to ENPs in consumer or environmental settings may either be to the original, pristine ENPs, or more likely, to ENPs that have been incorporated into products, released, aged and transformed. Here, key product-use related aging and transformation processes affecting ENPs are reviewed.
View Article and Find Full Text PDFThe fluorescence of thin films of a diimine-substituted phenyleneethynylene compound can be efficiently quenched by nitroaromatic vapors, which is not the case for the unsubstituted parent compound. Thin-film porosity is usually considered to be an essential factor for efficient quenching, but in the present case the origin of the quenching is completely different, as both films are nonporous and hermetic to 2,4-dinitrotoluene (DNT) molecules. The molecular organization in the two crystallized thin films offers a low level of π stacking for both compounds, but the orientation of the phenylenethynylene fluorophore differs markedly with respect to the surface of the films.
View Article and Find Full Text PDFThe ability to detect minute traces of chemical warfare agents is mandatory both for military forces and homeland security. Various detectors based on different technologies are available but still suffer from serious drawbacks such as false positives. There is still a need for the development of innovative reliable sensors, in particular for organophosphorus nerve agents like Sarin.
View Article and Find Full Text PDFAn innovative sensor for the detection of nerve agents in the gas phase based on a carbon nanotube field-effect transistor was developed. A high sensitivity to organophosphorus gases was obtained by modifying gold electrodes with specific tailor-made self-assembled monolayers.
View Article and Find Full Text PDFA pi-conjugated compound was synthesized as a sensitive material for explosives detection. The detection of vapors of 2,4-dinitrotoluene was demonstrated with quartz crystal microbalance (QCM) and fluorescence transduction methods. The fluorescence intensity monitoring shows a higher sensitivity and selectivity than the monitoring of the QCM frequency.
View Article and Find Full Text PDFA triphenylamine-derived pentaaryl fullerene undergoes an unusual oxidative dearylation under basic conditions to give tetraarylated epoxy fullerene in high yield. The structure of the product was confirmed by single crystal X-ray diffraction. A mechanism is proposed to account for the loss of the addend and the subsequent formation of the epoxide group.
View Article and Find Full Text PDF