Publications by authors named "Simon Christensen"

Plant hemoglobins, often referred to as phytoglobins, play important roles in abiotic stress tolerance. Several essential small physiological metabolites can be bound to these heme proteins. In addition, phytoglobins can catalyze a range of different oxidative reactions in vivo.

View Article and Find Full Text PDF

Phytoglobins (Pgbs) are plant-originating heme proteins of the globin superfamily with varying degrees of hexacoordination. Pgbs have a conserved cysteine residue, the role of which is poorly understood. In this paper, we investigated the functional and structural role of cysteine in BvPgb1.

View Article and Find Full Text PDF

Spectral broadening of optical frequency combs with high repetition rate is of significant interest in optical communications, radio-frequency photonics and spectroscopy. Silicon nitride waveguides (SiN) in the anomalous dispersion region have shown efficient supercontinuum generation spanning an octave-bandwidth. However, the broadening mechanism in this regime is usually attained with femtosecond pulses in order to maintain the coherence.

View Article and Find Full Text PDF

We report a novel, to the best of our knowledge, analysis of high power rod fiber amplifiers by monitoring the cross-polarization of the output. Spatially and temporally resolved imaging of co- and cross-polarizations at high power amplification reveals dynamic eigenmode behavior of the rod fiber. The dynamic of the eigenmodes is caused by the moving refractive index grating written by the modal interference pattern of transverse mode instability and is the first direct observation of this refractive index grating, to our knowledge.

View Article and Find Full Text PDF

In this work we investigate transverse mode instability (TMI) in the presence of pump intensity noise and a controlled perturbation of the input coupling for a rod-type fiber amplifier using spatially and temporally resolved imaging (ST). We show that inherent pump intensity noise from the power supply can define significant peaks in the resulting TMI spectrum. ST measurements show that the TMI in the transition region consists of different orientations of LP.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with a high short-term mortality rate which leads to cognitive impairments that reduce the quality of life of the majority of patients. The miRNA-143/145 cluster is highly expressed in vascular smooth muscle cells (VSMC) and has been shown to be necessary for differentiation and function, as well as an important determinant for phenotypic modulation/switching of VSMCs in response to vascular injury. We aimed to determine whether miRNA-143 and miRNA-145 are important regulators of phenotypical changes of VSMCs in relation to SAH, as well as establishing their physiological role in the cerebral vasculature.

View Article and Find Full Text PDF

Aneurysmal subarachnoid haemorrhage (SAH) is a variant of haemorrhagic stroke with a striking 50% mortality rate. In addition to the initial insult, secondary delayed brain injury may occur days after the initial ischemic insult and is associated with vasospasms leading to delayed cerebral ischemia. We have previously shown that the MEK1/2 inhibitor U0126 improves neurological assessment after SAH in rats.

View Article and Find Full Text PDF

Vascular pathophysiological changes after haemorrhagic stroke, such as phenotypic modulation of the cerebral arteries and cerebral vasospasms, are associated with delayed cerebral ischemia (DCI) and poor outcome. The only currently approved drug treatment shown to reduce the risk of DCI and improve neurologic outcome after aneurysmal subarachnoid haemorrhage (SAH) is nimodipine, a dihydropyridine L-type voltage-gated Ca2+ channel blocker. MEK1/2 mediated transcriptional upregulation of contractile receptors, including endothelin-1 (ET-1) receptors, has previously been shown to be a factor in the pathology of SAH.

View Article and Find Full Text PDF

α-Peptoids as well as peptide/α-peptoid hybrids and peptide/β-peptoid hybrids constitute major classes of proteolytically stable peptidomimetics that have been extensively investigated as mimetics of biologically active peptides. Representatives of lipidated peptide/β-peptoid hybrids have been identified as promising immunomodulatory lead compounds, and hence access to these via protocols suitable for gram-scale synthesis is warranted to enable animal in vivo studies. Recent observations indicated that several byproducts appear in crude mixtures of relatively short benzyl-based peptide/β-peptoid oligomers, and that these were most predominant when the β-peptoid units displayed an α-chiral benzyl side chain.

View Article and Find Full Text PDF

Emergence of antibiotic-resistant bacteria constitutes an increasing threat to human health. For example, treatment options for Staphylococcus aureus infections is declining with the worldwide spreading of highly virulent community-associated methicillin-resistant S. aureus (CA-MRSA) strains.

View Article and Find Full Text PDF

4-Nitrophenyl formate was found to be the most convenient reagent in solid-phase formylation of peptides with a high formylation degree within 20 min to 3 h depending on reaction temperature and length of peptide.

View Article and Find Full Text PDF

Staphylococcus aureus infections are becoming increasingly difficult to treat due to antibiotic resistance with the community-associated methicillin-resistant S. aureus (CA-MRSA) strains such as USA300 being of particular concern. The inhibition of bacterial virulence has been proposed as an alternative approach to treat multi-drug resistant pathogens.

View Article and Find Full Text PDF