Objectives: To test the hypothesis that recently-developed total body-positron emission tomography (TB-PET) imaging with integrated computed tomography (CT) will enable low-dose, quantitative, domain-specific evaluation of the total inflammatory burden of psoriatic arthritis (PsA), and associate with established outcome measures of the clinical domains of PsA.
Methods: Seventy-one adult participants (40 with PsA, 16 with rheumatoid arthritis (RA), and 15 with osteoarthritis (OA)) underwent 20-min TB-PET/CT scans using [18F]FDG, a glucose analogue radiotracer. [18F]FDG uptake was assessed qualitatively and quantitatively.
Position-sensitive silicon photomultipliers (PS-SiPMs) are promising photodetectors for ultra-high spatial resolution small-animal positron emission tomography (PET) scanners. This paper evaluated the performance of the latest generation of linearly-graded SiPMs (LG-SiPMs), a type of PS-SiPM, for ultra-high spatial resolution PET applications using LYSO arrays from two vendors. Approach: Two dual-ended readout detectors were developed by coupling LG-SiPMs to both ends of the two LYSO arrays.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
December 2024
Almost all high spatial resolution positron emission tomography (PET) detectors based on pixelated scintillator arrays utilize crystal arrays with smaller pitches than photodetector arrays, leading to challenges in resolving edge crystals. To address this issue, this paper introduces a novel multi-resolution silicon photomultiplier (SiPM) array design aimed at decreasing the number of readout channels required while maintaining the crystal resolvability of the detector, especially for edge crystals. The performance of a pseudo 9 × 9 multi-resolution SiPM array, consisting of 6.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
November 2024
Purpose: Dual-energy (DE) CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging. However, this increases radiation dose and may require a hardware upgrade due to the added second x-ray CT scan. The recently proposed PET-enabled DECT method allows dual-energy imaging using a conventional PET/CT scanner without the need to change scanner hardware or increase radiation exposure.
View Article and Find Full Text PDFPositron emission tomography (PET) is the most sensitive biomedical imaging modality for non-invasively detecting and visualizing positron-emitting radiopharmaceuticals within a subject. In PET, measuring the time-of-flight (TOF) information for each pair of 511-keV annihilation photons improves effective sensitivity but requires high timing resolution. Hybrid materials that emit both scintillation and Cherenkov photons, such as bismuth germanate (BGO), recently offer the potential for more precise timing information from Cherenkov photons while maintaining adequate energy resolution from scintillation photons.
View Article and Find Full Text PDF. This study presents a universal phantom for positron emission tomography (PET) that allows arbitrary static and dynamic activity distributions of various complexities to be generated using a single PET acquisition..
View Article and Find Full Text PDFUnlabelled: Quantitative total-body PET imaging of blood flow can be performed with freely diffusible flow radiotracers such as O-water and C-butanol, but their short half-lives necessitate close access to a cyclotron. Past efforts to measure blood flow with the widely available radiotracer F-fluorodeoxyglucose (FDG) were limited to tissues with high F-FDG extraction fraction. In this study, we developed an early-dynamic F-FDG PET method with high temporal resolution kinetic modeling to assess total-body blood flow based on deriving the vascular transit time of F-FDG and conducted a pilot comparison study against a C-butanol reference.
View Article and Find Full Text PDFPenalty parameters in penalized likelihood positron emission tomography (PET) reconstruction are typically determined empirically. The cross-validation log-likelihood (CVLL) method has been introduced to optimize these parameters by maximizing a CVLL function, which assesses the likelihood of reconstructed images using one subset of a list-mode dataset based on another subset. This study aims to validate the efficacy of the CVLL method in whole-body imaging for cancer patients using a conventional clinical PET scanner.
View Article and Find Full Text PDFBlood-brain barrier (BBB) disruption is involved in the pathogenesis and progression of many neurological and systemic diseases. Non-invasive assessment of BBB permeability in humans has mainly been performed with dynamic contrast-enhanced magnetic resonance imaging, evaluating the BBB as a structural barrier. Here, we developed a novel non-invasive positron emission tomography (PET) method in humans to measure the BBB permeability of molecular radiotracers that cross the BBB through different transport mechanisms.
View Article and Find Full Text PDFStandard Patlak plot is widely used to describe FDG kinetics for dynamic PET imaging. Whole-body Patlak parametric imaging remains constrained due to the need for a full-time input function. Here, we demonstrate the Relative Patlak (RP) plot, which eliminates the need for the early-time input function, for total-body parametric imaging and its application to clinical 20-min scan acquired in list-mode.
View Article and Find Full Text PDFImmunotherapies, especially checkpoint inhibitors such as anti-programmed cell death protein 1 (anti-PD-1) antibodies, have transformed cancer treatment by enhancing the immune system's capability to target and kill cancer cells. However, predicting immunotherapy response remains challenging. F-arabinosyl guanine ([F]F-AraG) is a molecular imaging tracer targeting activated T cells, which may facilitate therapy response assessment by noninvasive quantification of immune cell activity within the tumor microenvironment and elsewhere in the body.
View Article and Find Full Text PDFThis is an explanatory paper on Sun Il Kwon et al., Nat. Photon.
View Article and Find Full Text PDFThe collaboration of Yale, the University of California, Davis, and United Imaging Healthcare has successfully developed the NeuroEXPLORER, a dedicated human brain PET imager with high spatial resolution, high sensitivity, and a built-in 3-dimensional camera for markerless continuous motion tracking. It has high depth-of-interaction and time-of-flight resolutions, along with a 52.4-cm transverse field of view (FOV) and an extended axial FOV (49.
View Article and Find Full Text PDFOur aim was to define a lower limit of reduced injected activity in delayed [F]FDG total-body (TB) PET/CT in pediatric oncology patients. In this single-center prospective study, children were scanned for 20 min with TB PET/CT, 120 min after intravenous administration of a 4.07 ± 0.
View Article and Find Full Text PDFUnlabelled: Dynamic PET allows quantification of physiological parameters through tracer kinetic modeling. For dynamic imaging of brain or head and neck cancer on conventional PET scanners with a short axial field of view, the image-derived input function (ID-IF) from intracranial blood vessels such as the carotid artery (CA) suffers from severe partial volume effects. Alternatively, optimization-derived input function (OD-IF) by the simultaneous estimation (SIME) method does not rely on an ID-IF but derives the input function directly from the data.
View Article and Find Full Text PDFBackground: Kinetic modeling of F-florbetaben provides important quantification of brain amyloid deposition in research and clinical settings but its use is limited by the requirement of arterial blood data for quantitative PET. The total-body EXPLORER PET scanner supports the dynamic acquisition of a full human body simultaneously and permits noninvasive image-derived input functions (IDIFs) as an alternative to arterial blood sampling. This study quantified brain amyloid burden with kinetic modeling, leveraging dynamic F-florbetaben PET in aorta IDIFs and the brain in an elderly cohort.
View Article and Find Full Text PDFThe lungs are supplied by both the pulmonary arteries carrying deoxygenated blood originating from the right ventricle and the bronchial arteries carrying oxygenated blood downstream from the left ventricle. However, this effect of dual blood supply has never been investigated using PET, partially because the temporal resolution of conventional dynamic PET scans is limited. The advent of PET scanners with a long axial field of view, such as the uEXPLORER total-body PET/CT system, permits dynamic imaging with high temporal resolution (HTR).
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2024
Dual-energy computed tomography (DECT) enables material decomposition for tissues and produces additional information for PET/CT imaging to potentially improve the characterization of diseases. PET-enabled DECT (PDECT) allows the generation of PET and DECT images simultaneously with a conventional PET/CT scanner without the need for a second x-ray CT scan. In PDECT, high-energy -ray CT (GCT) images at 511 keV are obtained from time-of-flight (TOF) PET data and are combined with the existing x-ray CT images to form DECT imaging.
View Article and Find Full Text PDFX-ray computed tomography (CT) in PET/CT is commonly operated with a single energy, resulting in a limitation of lacking tissue composition information. Dual-energy (DE) spectral CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging, but would either require hardware upgrade or increase radiation dose due to the added second x-ray CT scan. Recently proposed PET-enabled DECT method allows dual-energy spectral imaging using a conventional PET/CT scanner without the need for a second x-ray CT scan.
View Article and Find Full Text PDFThis study presents and evaluates a robust Monte Carlo-based scatter correction (SC) method for long axial field of view (FOV) and total-body positron emission tomography (PET) using the uEXPLORER total-body PET/CT scanner.Our algorithm utilizes the Monte Carlo (MC) tool SimSET to compute SC factors in between individual image reconstruction iterations within our in-house list-mode and time-of-flight-based image reconstruction framework. We also introduced a unique scatter scaling technique at the detector block-level for optimal estimation of the scatter contribution in each line of response.
View Article and Find Full Text PDFPurpose: Kinetic modeling of F-florbetaben provides important quantification of brain amyloid deposition in research and clinical settings but its use is limited by the requirement of arterial blood data for quantitative PET. The total-body EXPLORER PET scanner supports the dynamic acquisition of a full human body simultaneously and permits noninvasive image-derived input functions (IDIFs) as an alternative to arterial blood sampling. This study quantified brain amyloid burden with kinetic modeling, leveraging dynamic F-florbetaben PET in aorta IDIFs and the brain in an elderly cohort.
View Article and Find Full Text PDFThe world's first total-body PET/CT system has been in routine clinical and research use at UC Davis since 2019. The uEXPLORER total-body PET scanner has been designed with an axial field-of-view long enough to completely encompass most human subjects (194 cm or 76 inches long), allowing for a 15-68-fold gain in the PET signal collection efficiency over conventional PET scanners. A high-sensitivity PET scanner that can image the entire subject with a single bed position comes with new benefits and challenges to consider for efficient and practical use.
View Article and Find Full Text PDFWith most of the T cells residing in the tissue, not the blood, developing noninvasive methods for in vivo quantification of their biodistribution and kinetics is important for studying their role in immune response and memory. This study presents the first use of dynamic positron emission tomography (PET) and kinetic modeling for in vivo measurement of CD8 T cell biodistribution in humans. A Zr-labeled CD8-targeted minibody (Zr-Df-Crefmirlimab) was used with total-body PET in healthy individuals ( = 3) and coronavirus disease 2019 (COVID-19) convalescent patients ( = 5).
View Article and Find Full Text PDF