Publications by authors named "Simon C Weli"

Atlantic cod farming experiences renewed growth in Norway, and increased awareness is essential to address emerging diseases in this species. There are few reports on gill diseases in cod, and to date, no viral gill infections of cod have been documented. In this study, we collected samples from three sequential time points in summer 2023 from farmed cod suffering from cardiorespiratory disease.

View Article and Find Full Text PDF

Finfish aquaculture is one of the fastest-growing food production sectors in the world, and numerous infectious diseases are a constant challenge to the fish farming industry, causing decreased fish health and, consequently, economic losses. Specific and sensitive tools for pathogen detection are crucial for the surveillance of environmental samples to prevent the spread of fish pathogens in farms. Monitoring of waterborne pathogens through filtration of water and subsequent molecular detection of target-specific DNA or RNA sequence motifs is an animal-friendly method.

View Article and Find Full Text PDF

Salmonid alphavirus strain 3 is responsible for outbreaks of pancreas disease in salmon and rainbow trout in Norway. Although the extensive amount of research on SAV3 focused mainly on the heart and pancreas (of clinical importance), tropism and pathogenesis studies of the virus in other salmon tissues are limited. Here, we used a combination of RT-qPCR (Q_nsp1 gene) and in situ hybridization (RNAscope) to demonstrate the tropism of SAV3 in situ in tissues of Atlantic salmon, employing a challenge model (by cohabitation).

View Article and Find Full Text PDF

Many sialic acid-binding viruses express a receptor-destroying enzyme (RDE) that removes the virus-targeted receptor and limits viral interactions with the host cell surface. Despite a growing appreciation of how the viral RDE promotes viral fitness, little is known about its direct effects on the host. Infectious salmon anemia virus (ISAV) attaches to 4--acetylated sialic acids on Atlantic salmon epithelial, endothelial, and red blood cell surfaces.

View Article and Find Full Text PDF

The Salmon gill poxvirus (SGPV) has emerged in recent years as the cause of an acute respiratory disease that can lead to high mortality in farmed Atlantic salmon presmolts, known as Salmon gill poxvirus disease. SGPV was first identified in Norway in the 1990s, and its large DNA genome, consisting of over 206 predicted protein-coding genes, was characterized in 2015. This review summarizes current knowledge relating to disease manifestation and its effects on the host immune system and describes dissemination of the virus.

View Article and Find Full Text PDF

Infectious salmon anaemia virus (ISAV) binds circulating Atlantic salmon erythrocytes, but the relevance of this interaction for the course of infection and development of disease remains unclear. We here characterise ISAV-erythrocyte interactions in experimentally infected Atlantic salmon and show that ISAV-binding to erythrocytes is common and precedes the development of disease. Viral RNA and infective particles were enriched in the cellular fraction of blood.

View Article and Find Full Text PDF

(ISAV) infection is currently detected by fish sampling for PCR and immunohistochemistry analysis. As an alternative to sampling fish, we evaluated two different membrane filters in combination with four buffers for elution, concentration, and detection of ISAV in seawater, during a bath challenge of Atlantic salmon ( L.) post-smolts with high and low concentrations of ISAV.

View Article and Find Full Text PDF

The traditional strategy for national surveillance of salmonid alphavirus (SAV) infection in Norwegian fish farms relies on a costly, time-consuming, and resource-demanding approach based on the monthly sampling of fish from all marine farms with salmonids. In order to develop an alternative surveillance method, a water filtration method was tested in parallel with the ongoing surveillance program at 7 Norwegian marine farm sites of Atlantic salmon Salmo salar L. with no current suspicion of SAV infection.

View Article and Find Full Text PDF

Infectious salmon anaemia virus (ISAV) is the cause of an important waterborne disease of farmed Atlantic salmon. Detection of virus in water samples may constitute an alternative method to sacrificing fish for surveillance of fish populations for the presence of ISA-virus. We aimed to evaluate different membrane filters and buffers for concentration and recovery of ISAV in seawater, prior to molecular detection.

View Article and Find Full Text PDF

Waterborne viral infections represent a major threat to fish health. For many viruses, understanding the interplay between pathogens, host and environment presents a major hurdle for transmission. Salmonid alphavirus (SAV) can infect and cause pancreas disease (PD) in farmed salmonids in seawater.

View Article and Find Full Text PDF
Article Synopsis
  • Atlantic salmon gill disease causes significant financial losses in aquaculture, and until now, research tools for studying the microorganisms responsible and the fish's responses have been lacking.
  • Two gill cell lines from Atlantic salmon, ASG-10 and ASG-13, were established; ASG-10 shows specific epithelial cell markers, while ASG-13 does not have these structures.
  • Both cell lines are susceptible to various viruses affecting salmon, with ASG-10 demonstrating the ability to proliferate and migrate, making them valuable for future research on gill diseases and potential alternatives to using experimental animals.
View Article and Find Full Text PDF

Background: In September 2008, a disease outbreak characterized by acute, severe gill pathology and peritonitis, involving the gastrointestinal tract, was observed in an Atlantic salmon (Salmo salar L.) farm in north-western Norway. During subsequent sampling in November 2008 and January 2009, chronic proliferative gill inflammation and peritonitis was observed.

View Article and Find Full Text PDF

Sialic acids are located at the terminal branches of the cell glycocalyx and secreted glycan molecules. O-Acetylation is an important modification of the sialic acids, however very few studies have demonstrated the in situ distribution of the O-Acetylated sialic acids. Here the distribution of glycoprotein bound 4-O-Acetylated sialic acids (4-O-Ac sias) in vertebrates was determined using a novel virus histochemistry assay.

View Article and Find Full Text PDF

Previously, it has been assumed that fish lack organized mucosa-associated lymphoid structures. Recently, an interbranchial lymphoid tissue (ILT) was described in salmonid gills at a site with substantial exposure to antigen. In this study, immune responses were examined in gills, mid-kidney and the laser-dissected ILT of Atlantic salmon (Salmo salar L.

View Article and Find Full Text PDF

Endothelial cells (ECs) line the luminal surfaces of the cardiovascular system and play an important role in cardiovascular functions such as regulation of haemostasis and vasomotor tone. A number of fish and mammalian viruses target these cells in the course of their infection. Infectious salmon anaemia virus (ISAV) attacks ECs and red blood cells (RBCs) of farmed Atlantic salmon (Salmo salar L.

View Article and Find Full Text PDF

Infectious salmon anaemia virus (ISAV), a member of the Orthomyxoviridae family, infects and causes disease in farmed Atlantic salmon (Salmo salar L.). Previous studies have shown Atlantic salmon endothelial cells to be the primary targets of ISAV infection.

View Article and Find Full Text PDF

Infectious salmon anemia (ISA) is a World Organization for Animal Health (OIE)-listed disease of farmed Atlantic salmon, characterized by slowly developing anemia and circulatory disturbances. The disease is caused by ISA virus (ISAV) in the Orthomyxoviridae family; hence, it is related to influenza. Here we explore the pathogenesis of ISA by focusing on virus tropism, receptor tissue distribution, and pathological changes in experimentally and naturally infected Atlantic salmon.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how Atlantic cod respond to incomplete Freund's adjuvant (IFA), focusing on the inflammatory reactions in their peritoneal tissue.
  • Using necropsy, histology, and electron microscopy, researchers identified a strong inflammatory response characterized by various types of immune cells, including macrophage-like cells and those expressing IFN-γ.
  • Two distinct patterns of inflammatory cell organization were observed around the IFA droplets, indicating different responses that may be similar to those seen in other fish species, with a significant number of dead cells contributing to inflammation.
View Article and Find Full Text PDF

Avipoxviruses (APVs) belong to the Chordopoxvirinae subfamily of the Poxviridae family. APVs are distributed worldwide and cause disease in domestic, pet and wild birds of many species. APVs are transmitted by aerosols and biting insects, particularly mosquitoes and arthropods and are usually named after the bird species from which they were originally isolated.

View Article and Find Full Text PDF

Background And Objectives: Expansion and maintenance of human embryonic stem cells (hESCs) in undifferentiated state is influenced by complex signals in the microenvironment, including those contingent upon oxygen availability. Responses mediated by Notch and Hedgehog (Hh) have essential role in the growth and maintenance of hESCs, therefore this study examined their effect on the self-renewal of hESCs exposed to low oxygen.

Methods And Results: Using potent antagonists γ-secretase inhibitor and cyclopamine, we inhibited Notch and Hh pathways, respectively, in the CLS1 hESC line expanded continuously in a hypoxic atmosphere of 5% oxygen.

View Article and Find Full Text PDF

The maintenance of pluripotency of human embryonic stem cells (hESCs) requires a high efficiency of self-renewal. During in vitro propagation, however, spontaneous differentiation occurs frequently, and there is also a risk of chromosomal changes. In this study, we assessed the properties of hESCs after long-term culture at ambient air and 5% oxygen growth conditions.

View Article and Find Full Text PDF

Minocycline is a tetracycline derivative with antiapoptotic and anti-inflammatory properties, and the drug has been shown to have beneficial effects in a variety of models of neurological disorders. The potentially neuroprotective role of minocycline was assessed in experimental in vitro and in vivo models of rabies virus infection. In this study, 5 nM minocycline did not improve the viability of embryonic mouse cortical and hippocampal neurons infected in vitro with the attenuated SAD-D29 strain of rabies virus, based on assessments using trypan blue exclusion.

View Article and Find Full Text PDF

Cultures derived from the cerebral cortices and hippocampi of 17-day-old mouse fetuses infected with the CVS strain of rabies virus showed loss of trypan blue exclusion, morphological apoptotic features, and activated caspase 3 expression, indicating apoptosis. The NMDA (N-methyl-D-aspartate acid) antagonists ketamine (125 microM) and MK-801 (60 microM) were found to have no significant neuroprotective effect on CVS-infected neurons, while the caspase inhibitor Ac-Asp-Glu-Val aspartic acid aldehyde (25 microM) exerted a marked neuroprotective effect. Glutamate-stimulated increases in levels of intracellular calcium were reduced in CVS-infected hippocampal neurons.

View Article and Find Full Text PDF

Less neurovirulent strains of rabies virus have been recognized to be stronger inducers of neuronal apoptosis in vitro than more neurovirulent strains, but few studies have clarified whether this also applies in vivo. A comparative study was performed in two-day-old ICR mice inoculated in a hindlimb thigh muscle with recombinant rabies virus vaccine strain SAD-L16 (L16) or SAD-D29 (D29), which contains an attenuating substitution of Arg333 in the rabies virus glycoprotein. Histopathological and immunohistochemical analyses of brains were performed at early daily time points and in moribund animals.

View Article and Find Full Text PDF

Avipoxviruses have many advantages and are being increasingly employed as recombinant vaccine vectors. One attractive feature is that while inserted transgenes are expressed in immunologically favourable ways, avipoxvirus infections of mammalian cells are believed to be abortive. The experimental evidence supporting this belief is, however, based on a limited number of mammalian cell-types and a few avipoxvirus species.

View Article and Find Full Text PDF