Well-diffracting crystals are essential to obtain relevant structural data that will lead to understanding of RNA Polymerase II (Pol II) transcriptional processes at a molecular level. Here we present a strategy to study Pol II crystals using negative stain transmission electron microscopy (TEM) and a methodology to optimize radiation damage free data collection using free electron laser (FEL) at the Linac Coherent Light Source (LCLS). The use of negative stain TEM allowed visualization and optimization of crystal diffraction by monitoring the lattice quality of crystallization conditions.
View Article and Find Full Text PDFSolving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. Herein we present the structure of the largest aqueous gold cluster, Au(p-MBA) (p-MBA: para-mercaptobenzoic acid), solved by electron micro-diffraction (MicroED) to subatomic resolution (0.85 Å) and by X-ray diffraction at atomic resolution (1.
View Article and Find Full Text PDFTraditionally, crystallographic analysis of macromolecules has depended on large, well-ordered crystals, which often require significant effort to obtain. Even sizable crystals sometimes suffer from pathologies that render them inappropriate for high-resolution structure determination. Here we show that fragmentation of large, imperfect crystals into microcrystals or nanocrystals can provide a simple path for high-resolution structure determination by the cryoEM method MicroED and potentially by serial femtosecond crystallography.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
May 2016
The crystallization of protein samples remains the most significant challenge in structure determination by X-ray crystallography. Here, the effectiveness of transmission electron microscopy (TEM) analysis to aid in the crystallization of biological macromolecules is demonstrated. It was found that the presence of well ordered lattices with higher order Bragg spots, revealed by Fourier analysis of TEM images, is a good predictor of diffraction-quality crystals.
View Article and Find Full Text PDFAmylomaltase MalQ is essential for the metabolism of maltose and maltodextrins in Escherichia coli. It catalyzes transglycosylation/disproportionation reactions in which glycosyl or dextrinyl units are transferred among linear maltodextrins of various lengths. To elucidate the molecular basis of transglycosylation by MalQ, we have determined three crystal structures of this enzyme, i.
View Article and Find Full Text PDF