Biogenic methane in subsurface coal seam environments is produced by diverse consortia of microbes. Although this methane is useful for global energy security, it remains unclear which microbes can liberate carbon from the coal. Most of this carbon is relatively resistant to biodegradation, as it is contained within aromatic rings.
View Article and Find Full Text PDFSpecial Antarctic Blend (SAB) diesel is the main fuel used on Macquarie Island and has been identified as the primary contaminant in several past spill events. This study evaluates the environmental impact of petroleum spills at high latitudes, in the soils of subantarctic Macquarie Island. Soil samples were collected from seven locations, including the "fuel farm" and main powerhouse that have been contaminated by petroleum in the past, and five reference locations, away from station infrastructure and from any obvious signs of contamination.
View Article and Find Full Text PDFActive hot springs are dynamic geobiologically active environments. Heat- and element-enriched fluids form hot spring sinter deposits that are inhabited by microbial and macroscopic eukaryotic communities, but it is unclear how variable heat, fluid circulation, and mineralization within hot spring systems affect the preservation of organic matter in sinters. We present geological, petrographic, and organic geochemical data from fossilized hot spring sinters (<13 Ka) from three distinct hot spring fields of Yellowstone National Park.
View Article and Find Full Text PDFThe production of methane as an end-product of organic matter degradation in the absence of other terminal electron acceptors is common, and has often been studied in environments such as animal guts, soils and wetlands due to its potency as a greenhouse gas. To date, however, the study of the biogeographic distribution of methanogens across coal seam environments has been minimal. Here, we show that coal seams are host to a diverse range of methanogens, which are distinctive to each geological basin.
View Article and Find Full Text PDFThe slow rate of natural attenuation of organic pollutants, together with unwanted environmental impacts of traditional remediation strategies, has necessitated the exploration of plant-microbe systems for enhanced bioremediation applications. The identification of microorganisms capable of promoting rhizoremediation through both plant growth-promoting and hydrocarbon-degrading processes is crucial to the success and adoption of plant-based remediation techniques. In this study, through successive enrichments of soil samples from a historic oil-contaminated site in Wietze, Germany, we isolated a plant growth-promoting and hydrocarbon-degrading bacterial consortium dominated by Alphaproteobacteria.
View Article and Find Full Text PDFThe pollution of terrestrial and aquatic environments by petroleum contaminants, especially diesel fuel, is a persistent environmental threat requiring cost-effective and environmentally sensitive remediation approaches. Bioremediation is one such approach, but is dependent on the availability of microorganisms with the necessary metabolic abilities and environmental adaptability. The aim of this study was to examine the microbial community in a petroleum contaminated site, and isolate organisms potentially able to degrade hydrocarbons.
View Article and Find Full Text PDFMethane is an important energy resource internationally, and a large proportion of this methane is produced by microbial communities living in coal seams. Despite the value of this resource for human energy security, our understanding of the metabolic roles played by specific taxa during the biodegradation of coal to methane in situ is quite limited. In order to develop a greater understanding of microbial catabolism on coal, a community from a coal seam in the Surat Basin, Australia, was incubated on 10 different aromatic organic compounds: coronene, benzo[a]pyrene, pyrene, phenanthrene, naphthalene, ethylbenzene, phenol, benzoate, vanillate and syringate.
View Article and Find Full Text PDFAs an ecotoxicological tool, bioassays are an effective screening tool to eliminate plants sensitive to the contaminant of interest, and thereby reduce the number of plant species requiring further study. We conducted a bioassay analysis of fifteen plant species to determine their tolerance to diesel fuel toxicity. Dose-response analysis revealed that increasing diesel fuel concentrations in the soil generally led to a monotonically decreasing biomass in 13 species (P < 0.
View Article and Find Full Text PDFThe shells of linguloid brachiopods such as and are inorganic-organic nanocomposites with a mineral phase of calcium phosphate (Ca-phosphate). Collagen, the main extracellular matrix in Ca-phosphatic vertebrate skeletons, has not previously been clearly resolved at the molecular level in organophosphatic brachiopods. Here, modern and recently-alive linguliform brachiopod shells of and have been studied by microRaman spectroscopy, Fourier transform infrared spectroscopy, field emission gun scanning electron microscopy, and thermal gravimetric analysis.
View Article and Find Full Text PDFThe remediation of contaminated sites using plant-based techniques has gained increasing attention in recent decades. However, information on the effects of contaminant imbibition on seed viability and germination rates are often lacking in the literature. To this end, our research investigated, by means of an event-time model, the effect of diesel fuel imbibition on the seed viability and germination rate of , a plant species with great potential for remediation of organic contaminants.
View Article and Find Full Text PDFThe Perseverance rover (Mars 2020) is equipped with an instrumental and analytical payload capable of identifying a broad range of organic molecules in geological samples. To determine the efficacy of these analytical techniques in recognizing important ecological and environmental signals in the rock record, this study utilized analogous equipment, including gas chromatography/mass spectrometry, Raman spectroscopy, X-ray fluorescence (XRF), Fourier transform infrared spectroscopy, along with macroscopic and petrographic observations, to examine early-middle Cambrian microbialites from the Arrowie Basin, South Australia. Morphological and petrographic observations of these carbonate successions reveal evidence of hypersaline-restricted environments.
View Article and Find Full Text PDFHot spring environments are commonly dominated by silica sinters that precipitate by the rapid cooling of silica-saturated fluids and the activity of microbial communities. However, the potential for preservation of organic traces of life in silica sinters back through time is not well understood. This is important for the exploration of early life on Earth and possibly Mars.
View Article and Find Full Text PDFIn recent decades, there has been increasing interest in the use of ethanol-blended fuels as alternatives to unblended fossil fuels. These initiatives are targeted at combating CO and particulate matter emissions, as these oxygenates leave behind a lesser carbon footprint. Noble as it may appear, this innovation is not without attendant ugly consequences.
View Article and Find Full Text PDFResearch on the early rise of oxygenic photosynthesis and eukaryotes has recently encountered a major pitfall, as some hopane and sterane biomarkers reported in Archaean rocks are the results of contamination. Following an extensive petrological framework in the Pilbara Craton, Western Australia, oil-bearing fluid inclusions and solid bitumens were identified in replacement and hydrothermal carbonate veins cross-cutting Archaean metasedimentary rocks. The 2.
View Article and Find Full Text PDFSoil health is important for the functioning of all terrestrial ecosystems, but may be impacted by contamination. Soil contamination may in turn necessitate rehabilitation and remediation works, but many of the techniques currently used cause physical disturbance to the soil structure, which may in itself affect soil assemblages. An understanding of the relative influence of these two types of disturbance on soil biota is needed to inform in situ remediation activities.
View Article and Find Full Text PDFThe majority of the evaporation models currently available in the literature for the prediction of oil spill weathering do not take into account diffusion-limited mass transport and the formation of a concentration gradient in the oil phase. The altered surface concentration of the spill caused by diffusion-limited transport leads to a slower evaporation rate compared to the predictions of diffusion-agnostic evaporation models. The model presented in this study incorporates a diffusive layer in the oil phase and predicts the diffusion-limited evaporation rate.
View Article and Find Full Text PDFAs part of risk assessment of fuel oil spills in Antarctic and subantarctic waters, this study describes partitioning of hydrocarbons from three fuels (Special Antarctic Blend diesel, SAB; marine gas oil, MGO; and intermediate grade fuel oil, IFO 180) into seawater at 0 and 5°C and subsequent depletion over 7days. Initial total hydrocarbon content (THC) of water accommodated fraction (WAF) in seawater was highest for SAB. Rates of THC loss and proportions in equivalent carbon number fractions differed between fuels and over time.
View Article and Find Full Text PDFHigh abundances of 7- and 6-monomethylalkanes as well as C17 n-alkane, indicative of cyanobacteria, have been discovered near the surfaces of Archean carbonate rocks of the Fortescue Group in the Pilbara region, Western Australia. The presence of cyanobacterial biomarkers is mostly limited to the surface layer (<1 cm thickness) of the rocks, indicating that the cyanobacteria are an endolithic species. Biomarkers are found in bitumen I (solvent-extracted rock) and also in bitumen II (solvent-extracted decarbonated rock).
View Article and Find Full Text PDFHopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.
View Article and Find Full Text PDFImproved testing and remediation procedures for sites contaminated with petroleum hydrocarbons are a priority in remote cold regions such as Antarctica, where costs are higher and remediation times are longer. Isoprenoid/n-alkane ratios are commonly used to determine the extent of biodegradation at low levels but are not useful once the n-alkanes have been removed. This study demonstrates how the diastereomers of the acyclic isoprenoids can be used to determine the extent of biodegradation in moderately biodegraded fuel in soils from a bioremediation trial at Casey Station, Antarctica.
View Article and Find Full Text PDFIn order to accelerate tissue-engineering research, a combinatorial approach for investigating the effect of surface energy on cell response has been developed. Surface energy is a fundamental material property that can influence cell behavior. Gradients in surface energy were created by using an automated stage to decelerate a glass slide coated with a self-assembled monolayer (SAM, n-octyldimethylchlorosilane) beneath a UV lamp such that the SAM is exposed to the UV-light in a graded fashion.
View Article and Find Full Text PDF