Publications by authors named "Simon Bruce"

Introduction: Workers operating on high-speed roads (i.e., incident responders and emergency service workers) are at significant risk of being fatally injured while working.

View Article and Find Full Text PDF

Non-invasive vagus nerve stimulation (nVNS) has recently been suggested as a potential therapy for traumatic brain injury (TBI). We previously demonstrated that nVNS inhibits cortical spreading depolarization, the electrophysiological event underlying migraine aura, and is relevant to TBI. Our past work also suggests a role for interleukin-1 beta (IL-1β) in cognitive deficits after closed head injury (CHI) in mice.

View Article and Find Full Text PDF

Objectives: Fatigue is one of the most important symptoms needing improvement in Primary Sjögren's syndrome (PSS). Previous data from our group suggest that noninvasive stimulation of the vagus nerve (nVNS) may improve symptoms of fatigue. This experimental medicine study uses the gammaCore device (electroCore) and a sham device to investigate the relationship between nVNS and fatigue in PSS, and to explore potential mechanisms involved.

View Article and Find Full Text PDF

Thrombosis and intimal hyperplasia have remained the major failure mechanisms of small-diameter vascular grafts used in bypass procedures. While most efforts to reduce thrombogenicity have used a biochemical surface modification approach, the use of local mechanical phenomena to aid in this goal has received somewhat less attention. In this work, the mechanical, fluid transport, and geometrical properties of a layered and porous vascular graft are optimized within a porohyperelastic finite element framework to maximize self-cleaning via luminal reversal fluid velocity (into the lumen).

View Article and Find Full Text PDF

Since the outbreak of the COVID-19 pandemic, races across academia and industry have been initiated to identify and develop disease modifying or preventative therapeutic strategies has been initiated. The primary focus has been on pharmacological treatment of the immune and respiratory system and the development of a vaccine. The hyperinflammatory state ("cytokine storm") observed in many cases of COVID-19 indicates a prognostically negative disease progression that may lead to respiratory distress, multiple organ failure, shock, and death.

View Article and Find Full Text PDF

Background: Noninvasive vagus nerve stimulation (nVNS) has recently emerged as a promising therapy for migraine. We previously demonstrated that vagus nerve stimulation inhibits cortical spreading depression (CSD), the electrophysiological event underlying migraine aura and triggering headache; however, the optimal nVNS paradigm has not been defined.

Methods: Various intensities and doses of nVNS were tested to improve efficacy on KCl-evoked CSD frequency and electrical threshold of CSD in a validated rat model.

View Article and Find Full Text PDF

Background: With the onset of the COVID-19 pandemic and subsequent widespread stay-at-home advisories throughout early 2020, hospitals have noticed a decrease in illnesses unrelated to COVID-19. However, the impact on traumatic injury is relatively unknown. This study aims to characterize patterns of trauma during the COVID-19 pandemic at a Level I Trauma Center.

View Article and Find Full Text PDF

High-speed roads present a considerable level of risk for frontline workers operating in these environments. To optimise safety, prevention activities need to target the key skills required to mitigate risk. The aim of this research was to explore the behavioural (compliance, participation, voice), motivational (safety motivation) and work demand (role clarity) factors that influence safety outcomes for incident responders working on high-speed roads.

View Article and Find Full Text PDF

Cortical spreading depolarization (SD) waves negatively affect neuronal survival and outcome after ischemic stroke. We here aimed to investigate the effects of vagus nerve stimulation (VNS) on SDs in a rat model of focal ischemia. To this end, we delivered non-invasive VNS (nVNS) or invasive VNS (iVNS) during permanent middle cerebral artery occlusion (MCAO), and found that both interventions significantly reduced the frequency of SDs in the cortical peri-infarct area compared to sham VNS, without affecting relative blood flow changes, blood pressure, heart rate or breathing rate.

View Article and Find Full Text PDF

Experimental and clinical data strongly support vagus nerve stimulation (VNS) as a novel treatment in migraine. Vagus nerve stimulation acutely suppresses cortical spreading depression (CSD) susceptibility, an experimental model that has been used to screen for migraine therapies. However, mechanisms underlying VNS efficacy on CSD are unknown.

View Article and Find Full Text PDF

The mechanisms by which noninvasive vagal nerve stimulation (nVNS) affect central and peripheral neural circuits that subserve pain and autonomic physiology are not clear, and thus remain an area of intense investigation. Effects of nVNS vs sham stimulation on subject responses to five noxious thermal stimuli (applied to left lower extremity), were measured in 30 healthy subjects (n = 15 sham and n = 15 nVNS), with fMRI and physiological galvanic skin response (GSR). With repeated noxious thermal stimuli a group × time analysis showed a significantly (p < .

View Article and Find Full Text PDF

Objectives: Primary Sjögren's syndrome (pSS) sufferers have rated chronic fatigue as the most important symptom needing improvement. Emerging data suggest that stimulation of the vagus nerve can modulate immunological responses. The gammaCore device (electroCore), developed to stimulate the cervical vagus nerve noninvasively, was used to assess the effects of vagus nerve activation on immune responses and clinical symptoms of pSS.

View Article and Find Full Text PDF

Objectives: The primary objective of this study was to explore the impact of noninvasive Vagal Nerve Stimulation (nVNS) on brain electrophysiology, as assessed through spontaneous resting-state EEG and stimulus-driven event-related potentials (ERPs).

Methods: A hand-held transcutaneous stimulator was placed on the neck over the main branch of the left vagus (active condition) or more laterally over neck muscles (sham condition), with two 120-sec long bursts of stimulation applied over a five-minute period. For each of eight neurotypical subjects, prior to stimulation, and then again beginning at 15, 120, and 240 min post-stimulation, ten minutes of background EEG data were collected, along with a series of ERPs-N100 auditory sensory-gating; the N1/P2 loudness dependent auditory evoked responses (LDAER); mismatch negativity; P300a; and P300b.

View Article and Find Full Text PDF

Background: Vagus nerve stimulation (VNS) significantly reduces infarct volume in rat models of cerebral ischemia, but the mechanism of this protective effect remains open.

Hypothesis: This study tested the hypothesis that non-invasive VNS (nVNS), during transient middle cerebral artery occlusion (MCAO), protects the blood-brain barrier (BBB), leading to reduced infarct size in ischemic brain.

Methods: Spontaneous hypertensive rats (SHRs) were subjected to a 90 min MCAO.

View Article and Find Full Text PDF

Chronically activated microglia contribute to the development of neurodegenerative diseases such as Alzheimer's disease (AD) by the release of pro-inflammatory mediators that compromise neuronal function and structure. Modulating microglia functions could be instrumental to interfere with disease pathogenesis. Previous studies have shown anti-inflammatory effects of acetylcholine (ACh) or norepinephrine (NE), which mainly activates the β-receptors on microglial cells.

View Article and Find Full Text PDF

Purpose: Sodium-glucose cotransporter-2 inhibitors (SGLT2i) comprise the newest class of oral hypoglycemic agents approved for treating type II diabetes mellitus (DM-II). Their use, however, has been associated with the rare development of euglycemic diabetic ketoacidosis (euDKA). We present three cases of euDKA that occurred following elective coronary artery bypass grafting surgery.

View Article and Find Full Text PDF

Stimulation of the cervical vagus nerve with implanted vagus nerve stimulation (iVNS) has been used clinically for more than 20 years to treat patients with epilepsy. More recently, a non-invasive cervical vagus nerve stimulation (nVNS), gammaCore, was developed, which has been purported to also stimulate the vagus nerve without the cost and morbidity associated with an iVNS system. gammaCore has been used to acutely treat various types of primary headaches, including migraine and cluster headaches (CH), and for the prevention of episodic, chronic, and menstrual migraines and CH.

View Article and Find Full Text PDF

Objectives: To develop the first high-resolution, multi-scale model of cervical non-invasive vagus nerve stimulation (nVNS) and to predict vagus fiber type activation, given clinically relevant rheobase thresholds.

Methods: An MRI-derived Finite Element Method (FEM) model was developed to accurately simulate key macroscopic (e.g.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) has been reported to be effective in the abortive treatment of both migraine and cluster headache. Using validated animal models of acute dural-intracranial (migraine-like) and trigeminal-autonomic (cluster-like) head pain we tested whether VNS suppresses ongoing and nociceptive-evoked firing of trigeminocervical neurons to explain its abortive effects in migraine and cluster headache. Unilateral VNS was applied invasively via hook electrodes placed on the vagus nerve.

View Article and Find Full Text PDF

The purpose of this manuscript is to establish a unified theory of porohyperelasticity with transport and growth and to demonstrate the capability of this theory using a finite element model developed in MATLAB. We combine the theories of volumetric growth and mixed porohyperelasticity with transport and swelling (MPHETS) to derive a new method that models growth of biological soft tissues. The conservation equations and constitutive equations are developed for both solid-only growth and solid/fluid growth.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to test the transcutaneous noninvasive vagus nerve stimulator (nVNS) (gammaCore©) device to determine if it modulates the peripheral immune system, as has been previously published for implanted vagus nerve stimulators.

Materials And Methods: A total of 20 healthy males and females were randomized to receive either nVNS or sham stimulation (SST). All subjects underwent an initial blood draw at 8:00 am, followed by stimulation with nVNS or SST at 8:30 am.

View Article and Find Full Text PDF

Background: Direct stimulation of the vagus nerve in the neck via surgically implanted electrodes is protective in animal models of stroke. We sought to determine the safety and efficacy of a non-invasive cervical VNS (nVNS) method using surface electrodes applied to the skin overlying the vagus nerve in the neck in a model of middle cerebral artery occlusion (MCAO).

Methods: nVNS was initiated variable times after MCAO in rats (n = 33).

View Article and Find Full Text PDF

Vagus nerve stimulation has recently been reported to improve symptoms of migraine. Cortical spreading depression is the electrophysiological event underlying migraine aura and is a trigger for headache. We tested whether vagus nerve stimulation inhibits cortical spreading depression to explain its antimigraine effect.

View Article and Find Full Text PDF