Publications by authors named "Simon Bengtsson"

Diffuser maintenance such as cleaning and membrane replacement are key to energy-efficient aeration at water resource recovery facilities (WRRFs). In previous research, fouling and ageing effects on diffuser performance have been lumped together by only comparing new and used membranes. But meaningful diffuser maintenance requires that fouling (mitigated by cleaning) can be separately assessed from ageing (calling for membrane replacement).

View Article and Find Full Text PDF

Primary filtration is a compact pre-treatment process for municipal wastewater, which can lead to high removal of total suspended solids (TSS) if polymer is added prior to filtration. Extensive carbon removal with rotating belt filter (RBF) can be combined with filter primary sludge fermentation at ambient temperature, in order to produce volatile fatty acids (VFAs) as carbon source for biological nutrient removal (BNR). This process was implemented at large pilot-scale and operated for more than a year.

View Article and Find Full Text PDF

This study demonstrates a comparison of energy usage, land footprint, and volumetric requirements of municipal wastewater treatment with aerobic granular sludge (AGS) and conventional activated sludge (CAS) at a full-scale wastewater treatment plant characterized by large fluctuations in nutrient loadings and temperature. The concentration of organic matter in the influent to the AGS was increased by means of hydrolysis and bypassing the pre-settler. Both treatment lines produced effluent concentrations below 5 mg BOD L , 10 mg TN L , and 1 mg TP L , by enhanced biological nitrogen- and phosphorus removal.

View Article and Find Full Text PDF
Article Synopsis
  • A year-long pilot-scale study investigated municipal wastewater treatment using rotating belt filtration followed by hydrolysis and acidogenic fermentation of primary sludge at ambient temperatures.
  • The process resulted in average yields of volatile fatty acids (VFAs) and soluble COD, with temperature and seasonal variations significantly influencing VFA production and microbial community structure.
  • Longer retention times enhanced soluble COD yield but decreased volumetric productivities, and notable changes in the microbiome composition were observed between the influent sludge and the fermentation reactors over time.
View Article and Find Full Text PDF

Phage bacteria interactions can affect structure, dynamics, and function of microbial communities. In the context of biological wastewater treatment (BWT), the presence of phages can alter the efficiency of the treatment process and influence the quality of the treated effluent. The active role of phages in BWT has been demonstrated, but many questions remain unanswered regarding the diversity of phages in these engineered environments, the dynamics of infection, the determination of bacterial hosts, and the impact of their activity in full-scale processes.

View Article and Find Full Text PDF

Production of polyhydroxyalkanoate (PHA) biopolymers by mixed microbial cultures concurrent to wastewater treatment is a valorization route for residual organic material. This development has been at pilot scale since 2011 using industrial and municipal organic residuals. Previous experience was the basis for a PHA production demonstration project: PHARIO.

View Article and Find Full Text PDF

Mixed microbial cultures are a viable means for polyhydroxyalkanoate (PHA) production, which can produce polymers of commercial quality with high yields. Various PHA co-polymer blends can be produced by surplus full-scale municipal activated sludge fed with fermented waste feedstocks. In biological nutrient removal, ammonia is converted to nitrate by ammonia and nitrite oxidizing bacteria (AOBs and NOBs) through nitrification and removed as nitrogen gas through denitrification.

View Article and Find Full Text PDF

The aerobic granular sludge (AGS) technology is growing towards becoming a mature option for new municipal wastewater treatment plants and capacity extensions. A process based on AGS was compared to conventional activated sludge processes (with and without enhanced biological phosphorus removal), an integrated fixed-film activated sludge (IFAS) process and a membrane bioreactor (MBR) by estimating the land area demand (footprint), electricity demand and chemicals' consumption. The process alternatives compared included pre-settling, sludge digestion and necessary post-treatment to achieve effluent concentrations of 8 mg/L nitrogen and 0.

View Article and Find Full Text PDF

Ozone was applied to return activated sludge in full-scale to study how ozone impacts filamentous bacteria viability (Live/Dead). Additionally, the ozonated sludges were subjected to anaerobic digestion trials and analysis of micropollutants (MPs). Ozone treatment (3-4.

View Article and Find Full Text PDF

A process was developed for biological treatment of municipal wastewater for carbon and nitrogen removal while producing added-value polyhydroxyalkanoates (PHAs). The process comprised steps for pre-denitrification, nitrification and post-denitrification and included integrated fixed-film activated sludge (IFAS) with biofilm carrier media to support nitrification. In a pilot-scale demonstration (500-800L), wastewater treatment performance, in line with European standards, were achieved for total chemical oxygen demand (83% removal) and total nitrogen (80% removal) while producing a biomass that was able to accumulate up to 49% PHA of volatile suspended solids with acetic acid or fermented organic residues as substrates.

View Article and Find Full Text PDF

The present investigation has focused on generating a surplus denitrifying biomass with high polyhydroxyalkanoate (PHA) producing potential while maintaining water treatment performance in biological nitrogen removal. The motivation for the study was to examine integration of PHA production into the water treatment and residuals management needs at the Suiker Unie sugar beet factory in Groningen, the Netherlands. At the factory, process waters are treated in nitrifying-denitrifying sequencing batch reactors (SBRs) to remove nitrogen found in condensate.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHAs) produced from fermented molasses and synthetic feeds containing single volatile fatty acids (VFAs) by an open mixed culture enriched in glycogen accumulating organisms (GAOs) were characterized with regards to molecular weight and thermal properties. The polymer contained five types of monomers, namely 3-hydroxybutyrate, 3-hydroxy-2-methylbutyrate, 3-hydroxyvalerate, 3-hydroxy-2-methylvalerate and 3-hydroxyhexanoate in different ratios depending on the VFA composition of the substrate. Polymers produced from fermented molasses had weight average molecular weights (M(w)) in the range (3.

View Article and Find Full Text PDF

Batch production of polyhydroxyalkanoates (PHAs) under aerobic conditions by an open mixed culture enriched in glycogen accumulating organisms (GAOs) with fermented sugar cane molasses as substrate was studied. The produced polymers contained five types of monomers, namely 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 3-hydroxy-2-methylbutyrate (3H2MB), 3-hydroxy-2-methylvalerate (3H2MV) and the medium chain length monomer 3-hydroxyhexanoate (3HHx). With fermented molasses as substrate, PHA was produced under concurrent consumption of stored glycogen with yields of 0.

View Article and Find Full Text PDF

Production of polyhydroxyalkanoates (PHAs) by an open mixed culture enriched in glycogen accumulating organisms (GAOs) under alternating anaerobic-aerobic conditions with acetate as carbon source was investigated. The culture exhibited a stable enrichment performance over the 450-day operating period with regards to phenotypic behavior and microbial community structure. Candidatus Competibacter phosphatis dominated the culture at between 54% and 70% of the bacterial biomass throughout the study, as determined by fluorescence in situ hybridization.

View Article and Find Full Text PDF

An open mixed culture was enriched with glycogen-accumulating organisms (GAOs) by using a sequencing batch reactor and treating an agroindustrial waste (sugar cane molasses) under cyclic anaerobic-aerobic conditions. Over a 1-year operating period, the culture exhibited a very stable GAO phenotype with an average polyhydroxyalkanoate (PHA) content of 17% total suspended solids. However, the GAO microbial community evolved over the course of operation to a culture exhibiting unusual characteristics in producing PHAs comprised of short-chain-length monomers, namely, 3-hydroxybutyrate, 3-hydroxy-2-methylbutyrate, 3-hydroxyvalerate, and 3-hydroxy-2-methylvalerate, and also, up to 31 mol% of the medium-chain-length (MCL) monomer 3-hydroxyhexanoate (3HHx).

View Article and Find Full Text PDF

A process for production of polyhydroxyalkanoates (PHA) by activated sludge treating a paper mill wastewater was investigated. The applied strategy was to select for glycogen accumulating organisms (GAOs) by alternating anaerobic/aerobic conditions. Acidogenic fermentation was used as pretreatment to convert various organic compounds to volatile fatty acids which are preferable substrates for PHA production.

View Article and Find Full Text PDF

An extraction and derivatization method was developed for more environmentally friendly routine quantification of polyhydroxyalkanoates (PHAs) in activated sludge biomass by gas chromatography (GC). This method can be further applied to assess relative changes in biomass carbohydrate levels relating to, for example, glycogen or extracellular polysaccharides. Further, co-extracted principal membrane fatty acids are indicative of relative changes in active biomass.

View Article and Find Full Text PDF

Production of polyhydroxyalkanoates (PHAs) in activated sludge treating wastewater represents an economical and environmental promising alternative to pure culture fermentations. A process for production of PHA from a paper mill wastewater was examined at laboratory scale. The three stage process examined consisted of acidogenic fermentation to convert wastewater organic matter to volatile fatty acids (VFAs), an activated sludge system operating under feast/famine conditions to enrich for PHA producing organisms and accumulation of PHA in batch experiments.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: