We investigated the permeation of molecules across lipid membranes on an open microfluidic platform. An array of droplet pairs was created by spotting aqueous droplets, dispersed in a lipid oil solution, onto a plate with cavities surrounded by a hydrophobic substrate. Droplets in two adjacent cavities come in contact and form an artificial lipid bilayer, called a droplet interface bilayer (DIB).
View Article and Find Full Text PDFIn the field of bottom-up synthetic biology, lipid membranes are the scaffold to create minimal cells and mimic reactions and processes at or across the membrane. In this context, we employ here a versatile microfluidic platform that enables precise positioning of nanoliter droplets with user-specified lipid compositions and in a defined pattern. Adjacent droplets make contact and form a droplet interface bilayer to simulate cellular membranes.
View Article and Find Full Text PDFNaturally occurring membranolytic antimicrobial peptides (AMPs) are rarely cell-type selective and highly potent at the same time. Template-based peptide design can be used to generate AMPs with improved properties . Following this approach, 18 linear peptides were obtained by computationally morphing the natural AMP Aurein 2.
View Article and Find Full Text PDFProtein-membrane interactions that modify the shape of membranes are important for generating curvature, membrane deformation by protein-protein crowding or trafficking of vesicles. Giant vesicles represent a simplified but versatile model for biological membranes and are commonly employed for the study of lipid domains and permeation across compartments. In this study, we investigated the interaction of pneumolysin (PLY), a pore-forming toxin secreted by Streptococcus pneumoniae, with multilamellar and unilamellar membranes.
View Article and Find Full Text PDFHigh-throughput screening of cell-secreted proteins is essential for various biotechnological applications. In this article, we show a microfluidic approach to perform the analysis of cell-secreted proteins in nanoliter droplet arrays by two complementary methods, fluorescence microscopy and mass spectrometry. We analyzed the secretion of the enzyme phytase, a phosphatase used as an animal feed additive, from a low number of yeast cells.
View Article and Find Full Text PDFWe investigate the influence of membrane potential on the permeation of cationic peptides. Therefore, we employ a microfluidic chip capable of capturing giant unilamellar vesicles (GUVs) in physical traps and fast exchange of chemical compounds. Control experiments with calcein proved that the vesicle membranes' integrity is not affected by the physical traps and applied shear forces.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
August 2018
Nucleated cells eliminate lesions induced by bacterial pore-forming toxins, such as pneumolysin via shedding patches of damaged plasmalemma into the extracellular milieu. Recently, we have shown that the majority of shed pneumolysin is present in the form of inactive pre-pores. This finding is surprising considering that shedding is triggered by Ca-influx following membrane perforation and therefore is expected to positively discriminate for active pores versus inactive pre-pores.
View Article and Find Full Text PDFBecause of inhomogeneous matrix-assisted laser desorption/ionization (MALDI) matrix crystallization and laser shot-to-shot variability, quantitation is not generally performed by MALDI mass spectrometry. Here we introduce a high-throughput MALDI method using an innovative high-density microarray for mass spectrometry (MAMS) technology, which allows semiquantitative measurement of cocaine and its metabolites, benzoylecgonine, cocaethylene, and ecgonine methyl ester. A MAMS slide containing lanes of hydrophilic spots and an automated slider to drag a sample droplet over several small spots can accomplish automatic sample aliquoting and lead to homogeneous crystallization of the matrix-analyte mixture and, thus, to a reproducible signal (average RSD 6%).
View Article and Find Full Text PDFSpecific interactions of peptides with lipid membranes are essential for cellular communication and constitute a central aspect of the innate host defense against pathogens. A computational method for generating innovative membrane-pore-forming peptides inspired by natural templates is presented. Peptide representation in terms of sequence- and topology-dependent hydrophobic moments is introduced.
View Article and Find Full Text PDF