Publications by authors named "Simon Arhar"

Aims: Carotenoids are a class of hydrophobic substances that are important as food and feed colorants and as antioxidants. The pathway for β-carotene synthesis has been expressed in various yeast species, albeit with rather low yields and titers. The inefficient conversion of phytoene to lycopene is often regarded as a bottleneck in the pathway.

View Article and Find Full Text PDF

Mycobacterium marinum CAR (MmCAR) is one of the most widely used CARs as the key enzyme for the synthesis of aldehydes, alcohols and further products from the respective carboxylic acids. Herein, we describe the first functionally secreted 131 kDa CAR and its isolated A-domain using Komagataella phaffii and a methanol-free constitutive expression strategy. Precipitated and lyophilized MmCAR (500 µg) was isolated from the culture supernatant and showed no decrease in activity for piperonylic acid (80% conversion), even when stored for up to 3 weeks at 4°C.

View Article and Find Full Text PDF

Background: Existing plasmid systems offer a fundamental foundation for gene expression in Cupriavidus necator; however, their applicability is constrained by the limitations of conjugation. Low segregational stabilities and plasmid copy numbers, particularly in the absence of selection pressure, pose challenges. Phytases, recognized for their widespread application as supplements in animal feed to enhance phosphate availability, present an intriguing prospect for heterologous production in C.

View Article and Find Full Text PDF

Background: Fatty acid-based substances play an important role in many products, from food supplements to pharmaceutical products and biofuels. The production of fatty acids, mainly in their esterified form as triacylglycerol (TAG), has been intensively studied in oleaginous yeasts, whereas much less effort has been invested into non-oleaginous species. In the present work, we engineered the model yeast Saccharomyces cerevisiae, which is commonly regarded as non-oleaginous, for the storage of high amounts of TAG, comparable to the contents achieved in oleaginous yeasts.

View Article and Find Full Text PDF

The biosynthetic pathways for most lipophilic metabolites share several common principles. These substances are built almost exclusively from acetyl-CoA as the donor for the carbon scaffold and NADPH is required for the reductive steps during biosynthesis. Due to their hydrophobicity, the end products are sequestered into the same cellular compartment, the lipid droplet.

View Article and Find Full Text PDF